Exponential decay estimates for fundamental solutions of Schrödinger-type operators
HTML articles powered by AMS MathViewer
- by Svitlana Mayboroda and Bruno Poggi PDF
- Trans. Amer. Math. Soc. 372 (2019), 4313-4357 Request permission
Abstract:
In the present paper, we establish sharp exponential decay estimates for operator and integral kernels of the (not necessarily self-adjoint) operators $L=-(\nabla -i\mathbf {a})^TA(\nabla -i\mathbf {a})+V$. The latter class includes, in particular, the magnetic Schrödinger operator $-\left (\nabla -i\mathbf {a}\right )^2+V$ and the generalized electric Schrödinger operator $-\textrm {div }A\nabla +V$. Our exponential decay bounds rest on a generalization of the FeffermanâPhong uncertainty principle to the present context and are governed by the Agmon distance associated with the corresponding maximal function. In the presence of a scale-invariant Harnack inequalityâfor instance, for the generalized electric Schrödinger operator with real coefficientsâwe establish both lower and upper estimates for fundamental solutions, thus demonstrating the sharpness of our results. The only previously known estimates of this type pertain to the classical Schrödinger operator $-\Delta +V$.References
- Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 745286
- Pascal Auscher and Besma Ben Ali, Maximal inequalities and Riesz transform estimates on $L^p$ spaces for Schrödinger operators with nonnegative potentials, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 6, 1975â2013 (English, with English and French summaries). MR 2377893, DOI 10.5802/aif.2320
- D. Arnold, G. David, M. Filoche, D. Jerison, and S. Mayboroda, Localization of eigenfunctions via an effective potential, arXiv:1712.02419 (2017).
- Pascal Auscher and Philippe Tchamitchian, Square root problem for divergence operators and related topics, Astérisque 249 (1998), viii+172 (English, with English and French summaries). MR 1651262
- Besma Ben Ali, Maximal inequalities and Riesz transform estimates on $L^p$ spaces for magnetic Schrödinger operators I, J. Funct. Anal. 259 (2010), no. 7, 1631â1672. MR 2665406, DOI 10.1016/j.jfa.2009.09.003
- Kurt Broderix, Dirk Hundertmark, and Hajo Leschke, Continuity properties of Schrödinger semigroups with magnetic fields, Rev. Math. Phys. 12 (2000), no. 2, 181â225. MR 1756112, DOI 10.1142/S0129055X00000083
- Jean Bourgain and Carlos E. Kenig, On localization in the continuous Anderson-Bernoulli model in higher dimension, Invent. Math. 161 (2005), no. 2, 389â426. MR 2180453, DOI 10.1007/s00222-004-0435-7
- F. Chiarenza, E. Fabes, and N. Garofalo, Harnackâs inequality for Schrödinger operators and the continuity of solutions, Proc. Amer. Math. Soc. 98 (1986), no. 3, 415â425. MR 857933, DOI 10.1090/S0002-9939-1986-0857933-4
- Blair Davey, Jonathan Hill, and Svitlana Mayboroda, Fundamental matrices and Green matrices for non-homogeneous elliptic systems, Publ. Mat. 62 (2018), no. 2, 537â614. MR 3815288, DOI 10.5565/PUBLMAT6221807
- Emmanuele DiBenedetto, Real analysis, BirkhĂ€user Advanced Texts: Basler LehrbĂŒcher. [BirkhĂ€user Advanced Texts: Basel Textbooks], BirkhĂ€user Boston, Inc., Boston, MA, 2002. MR 1897317, DOI 10.1007/978-1-4612-0117-5
- Nelson Dunford and B. J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323â392. MR 2020, DOI 10.1090/S0002-9947-1940-0002020-4
- Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129â206. MR 707957, DOI 10.1090/S0273-0979-1983-15154-6
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265â277. MR 402038, DOI 10.1007/BF02392268
- François Germinet and Abel Klein, Operator kernel estimates for functions of generalized Schrödinger operators, Proc. Amer. Math. Soc. 131 (2003), no. 3, 911â920. MR 1937430, DOI 10.1090/S0002-9939-02-06578-4
- Michael GrĂŒter and Kjell-Ove Widman, The Green function for uniformly elliptic equations, Manuscripta Math. 37 (1982), no. 3, 303â342. MR 657523, DOI 10.1007/BF01166225
- Bernard Helffer, Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, vol. 1336, Springer-Verlag, Berlin, 1988. MR 960278, DOI 10.1007/BFb0078115
- B. Helffer and A. Mohamed, CaractĂ©risation du spectre essentiel de lâopĂ©rateur de Schrödinger avec un champ magnĂ©tique, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 2, 95â112 (French, with English summary). MR 949012, DOI 10.5802/aif.1136
- Bernard Helffer and Jean Nourrigat, Hypoellipticité maximale pour des opérateurs polynÎmes de champs de vecteurs, Progress in Mathematics, vol. 58, BirkhÀuser Boston, Inc., Boston, MA, 1985 (French). MR 897103
- B. Helffer and J. Sjöstrand, Multiple wells in the semiclassical limit. I, Comm. Partial Differential Equations 9 (1984), no. 4, 337â408. MR 740094, DOI 10.1080/03605308408820335
- Steve Hofmann and Seick Kim, The Green function estimates for strongly elliptic systems of second order, Manuscripta Math. 124 (2007), no. 2, 139â172. MR 2341783, DOI 10.1007/s00229-007-0107-1
- Kazuhiro Kurata, An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials, J. London Math. Soc. (2) 62 (2000), no. 3, 885â903. MR 1794292, DOI 10.1112/S002461070000137X
- Kyungkeun Kang and Seick Kim, Global pointwise estimates for Greenâs matrix of second order elliptic systems, J. Differential Equations 249 (2010), no. 11, 2643â2662. MR 2718661, DOI 10.1016/j.jde.2010.05.017
- Kazuhiro Kurata and Satoko Sugano, A remark on estimates for uniformly elliptic operators on weighted $L^p$ spaces and Morrey spaces, Math. Nachr. 209 (2000), 137â150. MR 1734362, DOI 10.1002/(SICI)1522-2616(200001)209:1<137::AID-MANA137>3.3.CO;2-V
- Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225, DOI 10.1090/gsm/014
- Herbert Leinfelder and Christian G. Simader, Schrödinger operators with singular magnetic vector potentials, Math. Z. 176 (1981), no. 1, 1â19. MR 606167, DOI 10.1007/BF01258900
- V. Z. Meshkov, On the possible rate of decrease at infinity of the solutions of second-order partial differential equations, Mat. Sb. 182 (1991), no. 3, 364â383 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 2, 343â361. MR 1110071, DOI 10.1070/SM1992v072n02ABEH001414
- A. Mohamed and J. Nourrigat, Encadrement du $N(\lambda )$ pour un opĂ©rateur de Schrödinger avec un champ magnĂ©tique et un potentiel Ă©lectrique, J. Math. Pures Appl. (9) 70 (1991), no. 1, 87â99 (French). MR 1091921
- El Maati Ouhabaz, Analysis of heat equations on domains, London Mathematical Society Monographs Series, vol. 31, Princeton University Press, Princeton, NJ, 2005. MR 2124040
- Zhongwei Shen, On fundamental solutions of generalized Schrödinger operators, J. Funct. Anal. 167 (1999), no. 2, 521â564. MR 1716207, DOI 10.1006/jfan.1999.3455
- Zhongwei Shen, Eigenvalue asymptotics and exponential decay of eigenfunctions for Schrödinger operators with magnetic fields, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4465â4488. MR 1370650, DOI 10.1090/S0002-9947-96-01709-6
- Zhong Wei Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513â546 (English, with English and French summaries). MR 1343560, DOI 10.5802/aif.1463
- Zhongwei Shen, Estimates in $L^p$ for magnetic Schrödinger operators, Indiana Univ. Math. J. 45 (1996), no. 3, 817â841. MR 1422108, DOI 10.1512/iumj.1996.45.1268
- Barry Simon, Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions, Ann. Inst. H. PoincarĂ© Sect. A (N.S.) 38 (1983), no. 3, 295â308 (English, with French summary). MR 708966
- Barry Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling, Ann. of Math. (2) 120 (1984), no. 1, 89â118. MR 750717, DOI 10.2307/2007072
- Hart F. Smith, A parametrix construction for wave equations with $C^{1,1}$ coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 3, 797â835 (English, with English and French summaries). MR 1644105, DOI 10.5802/aif.1640
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
Similar Articles
Additional Information
- Svitlana Mayboroda
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota
- MR Author ID: 739839
- Email: svitlana@math.umn.edu
- Bruno Poggi
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota
- Email: poggi008@umn.edu
- Received by editor(s): February 7, 2018
- Received by editor(s) in revised form: August 22, 2018
- Published electronically: April 4, 2019
- Additional Notes: The first author was supported in part by NSF INSPIRE Award DMS 1344235, NSF CAREER Award DMS 1220089, the Simons Fellowship, and Simons Foundation grant 563916, SM
Both authors would like to thank the Mathematical Sciences Research Institute (NSF grant DMS 1440140) for its support and hospitality. - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 4313-4357
- MSC (2010): Primary 35J10; Secondary 35J15, 35J08, 35B40, 35E05, 35Q60, 35R03, 46N20, 47N20, 81Q10, 81Q12
- DOI: https://doi.org/10.1090/tran/7817
- MathSciNet review: 4009431