## Critical $\mathrm {L}^p$-differentiability of $\mathrm {BV}^\mathbb {A}$-maps and canceling operators

HTML articles powered by AMS MathViewer

- by Bogdan Raiţă PDF
- Trans. Amer. Math. Soc.
**372**(2019), 7297-7326 Request permission

## Abstract:

We give a generalization of Dorronsoro’s theorem on critical $\mathrm {L}^p$-Taylor expansions for $\mathrm {BV}^k$-maps on $\mathbb {R}^n$; i.e., we characterize homogeneous linear differential operators $\mathbb {A}$ of $k$th order such that $D^{k-j}u$ has $j$th order $\mathrm {L}^{n/(n-j)}$-Taylor expansion a.e. for all $u\in \mathrm {BV}^\mathbb {A}_{\operatorname {loc}}$ (here $j=1,\ldots , k$, with an appropriate convention if $j\geq n$). The space $\mathrm {BV}^\mathbb {A}_{\operatorname {loc}}$, a single framework covering $\mathrm {BV}$, $\mathrm {BD}$, and $\mathrm {BV}^k$, consists of those locally integrable maps $u$ such that $\mathbb {A} u$ is a Radon measure on $\mathbb {R}^n$.

For $j=1,\ldots ,\min \{k, n-1\}$, we show that the $\mathrm {L}^p$-differentiability property above is equivalent to Van Schaftingen’s elliptic and canceling condition for $\mathbb {A}$. For $j=n,\ldots , k$, ellipticity is necessary, but cancellation is not. To complete the characterization, we determine the class of elliptic operators $\mathbb {A}$ such that the estimate \begin{align}\tag {1} \|D^{k-n}u\|_{\mathrm {L}^\infty }\leqslant C\|\mathbb {A} u\|_{\mathrm {L}^1} \end{align} holds for all vector fields $u\in \mathrm {C}^\infty _c$. Surprisingly, the (computable) condition on $\mathbb {A}$ such that \eqref{eq:abs} holds is strictly weaker than cancellation.

The results on $\mathrm {L}^p$-differentiability can be formulated as sharp pointwise regularity results for overdetermined elliptic systems \begin{align*} \mathbb {A} u=\mu , \end{align*} where $\mu$ is a Radon measure, thereby giving a variant for the limit case $p=1$ of a theorem of Calderón and Zygmund which was not covered before.

## References

- Angela Alberico, Andrea Cianchi, and Carlo Sbordone,
*Continuity properties of solutions to the $p$-Laplace system*, Adv. Calc. Var.**10**(2017), no. 1, 1–24. MR**3592575**, DOI 10.1515/acv-2015-0029 - Giovanni Alberti, Stefano Bianchini, and Gianluca Crippa,
*On the $L^p$-differentiability of certain classes of functions*, Rev. Mat. Iberoam.**30**(2014), no. 1, 349–367. MR**3186944**, DOI 10.4171/RMI/782 - Angelo Alvino,
*Sulla diseguaglianza di Sobolev in spazi di Lorentz*, Boll. Un. Mat. Ital. A (5)**14**(1977), no. 1, 148–156. MR**438106** - Luigi Ambrosio, Alessandra Coscia, and Gianni Dal Maso,
*Fine properties of functions with bounded deformation*, Arch. Rational Mech. Anal.**139**(1997), no. 3, 201–238. MR**1480240**, DOI 10.1007/s002050050051 - L. Ambrosio, A. Ponce, and R. Rodiac,
*Critical weak-$L^{p}$ differentiability of singular integrals*, arXiv:1810.03924 (2018). - Luigi Ambrosio, Nicola Fusco, and Diego Pallara,
*Functions of bounded variation and free discontinuity problems*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR**1857292** - Gabriele Anzellotti and Mariano Giaquinta,
*Existence of the displacement field for an elastoplastic body subject to Hencky’s law and von Mises yield condition*, Manuscripta Math.**32**(1980), no. 1-2, 101–136. MR**592713**, DOI 10.1007/BF01298185 - Jesús Bastero, Mario Milman, and Francisco J. Ruiz Blasco,
*A note on $L(\infty ,q)$ spaces and Sobolev embeddings*, Indiana Univ. Math. J.**52**(2003), no. 5, 1215–1230. MR**2010324**, DOI 10.1512/iumj.2003.52.2364 - Colin Bennett, Ronald A. DeVore, and Robert Sharpley,
*Weak-$L^{\infty }$ and BMO*, Ann. of Math. (2)**113**(1981), no. 3, 601–611. MR**621018**, DOI 10.2307/2006999 - Jean Bourgain and Haïm Brezis,
*New estimates for elliptic equations and Hodge type systems*, J. Eur. Math. Soc. (JEMS)**9**(2007), no. 2, 277–315. MR**2293957**, DOI 10.4171/JEMS/80 - Pierre Bousquet and Petru Mironescu,
*An elementary proof of an inequality of Maz’ya involving $L^1$ vector fields*, Nonlinear elliptic partial differential equations, Contemp. Math., vol. 540, Amer. Math. Soc., Providence, RI, 2011, pp. 59–63. MR**2807409**, DOI 10.1090/conm/540/10659 - Pierre Bousquet and Jean Van Schaftingen,
*Hardy-Sobolev inequalities for vector fields and canceling linear differential operators*, Indiana Univ. Math. J.**63**(2014), no. 5, 1419–1445. MR**3283556**, DOI 10.1512/iumj.2014.63.5395 - D. Breit, L. Diening, and F. Gmeineder,
*Traces of functions of bounded $\mathbb {A}$-variation and variational problems with linear growth*, arXiv:1707.06804 (2017). - A.-P. Calderón and A. Zygmund,
*Local properties of solutions of elliptic partial differential equations*, Studia Math.**20**(1961), 171–225. MR**136849**, DOI 10.4064/sm-20-2-181-225 - A.-P. Calderón and A. Zygmund,
*On the differentiability of functions which are of bounded variation in Tonelli’s sense*, Rev. Un. Mat. Argentina**20**(1962), 102–121. MR**151557** - Andrea Cianchi and Luboš Pick,
*Sobolev embeddings into BMO, VMO, and $L_\infty$*, Ark. Mat.**36**(1998), no. 2, 317–340. MR**1650446**, DOI 10.1007/BF02384772 - Andrea Cianchi and Luboš Pick,
*Sobolev embeddings into spaces of Campanato, Morrey, and Hölder type*, J. Math. Anal. Appl.**282**(2003), no. 1, 128–150. MR**2000334**, DOI 10.1016/S0022-247X(03)00110-0 - Andrea Cianchi, Luboš Pick, and Lenka Slavíková,
*Higher-order Sobolev embeddings and isoperimetric inequalities*, Adv. Math.**273**(2015), 568–650. MR**3311772**, DOI 10.1016/j.aim.2014.12.027 - Sergio Conti, Daniel Faraco, and Francesco Maggi,
*A new approach to counterexamples to $L^1$ estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions*, Arch. Ration. Mech. Anal.**175**(2005), no. 2, 287–300. MR**2118479**, DOI 10.1007/s00205-004-0350-5 - J. Deny and J. L. Lions,
*Les espaces du type de Beppo Levi*, Ann. Inst. Fourier (Grenoble)**21**(1945), 305–370 (1955) (French). MR**74787**, DOI 10.5802/aif.55 - José R. Dorronsoro,
*Differentiability properties of functions with bounded variation*, Indiana Univ. Math. J.**38**(1989), no. 4, 1027–1045. MR**1029687**, DOI 10.1512/iumj.1989.38.38047 - Leon Ehrenpreis,
*Solution of some problems of division. I. Division by a polynomial of derivation*, Amer. J. Math.**76**(1954), 883–903. MR**68123**, DOI 10.2307/2372662 - Lawrence C. Evans and Ronald F. Gariepy,
*Measure theory and fine properties of functions*, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015. MR**3409135**, DOI 10.1201/b18333 - Martin Fuchs and Gregory Seregin,
*Variational methods for problems from plasticity theory and for generalized Newtonian fluids*, Lecture Notes in Mathematics, vol. 1749, Springer-Verlag, Berlin, 2000. MR**1810507**, DOI 10.1007/BFb0103751 - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR**1814364**, DOI 10.1007/978-3-642-61798-0 - F. Gmeineder and B. Raiţă,
*Embeddings for $\mathbb {A}$-weakly differentiable functions on domains*, arXiv:1709.04508 (2017). - F. Gmeineder and B. Raiţă,
*On critical $\mathrm {L}^p$-differentiability of $\mathrm {BD}$-maps*, OxPDE Technical Report 17.04, 2017. Rev. Mat. Iberoam. (to appear). - Piotr Hajłasz,
*On approximate differentiability of functions with bounded deformation*, Manuscripta Math.**91**(1996), no. 1, 61–72. MR**1404417**, DOI 10.1007/BF02567939 - Lars Hörmander,
*The analysis of linear partial differential operators. I*, 2nd ed., Springer Study Edition, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. MR**1065136**, DOI 10.1007/978-3-642-61497-2 - Richard A. Hunt,
*On $L(p,\,q)$ spaces*, Enseign. Math. (2)**12**(1966), 249–276. MR**223874** - Martin Jesenko and Bernd Schmidt,
*Homogenization and the limit of vanishing hardening in Hencky plasticity with non-convex potentials*, Calc. Var. Partial Differential Equations**57**(2018), no. 1, Paper No. 2, 43. MR**3723375**, DOI 10.1007/s00526-017-1261-2 - Bernd Kirchheim and Jan Kristensen,
*On rank one convex functions that are homogeneous of degree one*, Arch. Ration. Mech. Anal.**221**(2016), no. 1, 527–558. MR**3483901**, DOI 10.1007/s00205-016-0967-1 - Mikhail V. Korobkov and Jan Kristensen,
*The trace theorem, the Luzin $N$- and Morse-Sard properties for the sharp case of Sobolev-Lorentz mappings*, J. Geom. Anal.**28**(2018), no. 3, 2834–2856. MR**3833820**, DOI 10.1007/s12220-017-9936-7 - Tuomo Kuusi and Giuseppe Mingione,
*A nonlinear Stein theorem*, Calc. Var. Partial Differential Equations**51**(2014), no. 1-2, 45–86. MR**3247381**, DOI 10.1007/s00526-013-0666-9 - Bernard Malgrange,
*Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution*, Ann. Inst. Fourier (Grenoble)**6**(1955/56), 271–355 (French). MR**86990**, DOI 10.5802/aif.65 - Jan Malý and Luboš Pick,
*An elementary proof of sharp Sobolev embeddings*, Proc. Amer. Math. Soc.**130**(2002), no. 2, 555–563. MR**1862137**, DOI 10.1090/S0002-9939-01-06060-9 - V. G. Maz′ya,
*Prostranstva S. L. Soboleva*, Leningrad. Univ., Leningrad, 1985 (Russian). MR**807364** - Vladimir Maz’ya,
*Estimates for differential operators of vector analysis involving $L^1$-norm*, J. Eur. Math. Soc. (JEMS)**12**(2010), no. 1, 221–240. MR**2578609**, DOI 10.4171/JEMS/195 - J. Nečas and I. Hlavácek,
*Mathematical theory of elastic and elastoplastic bodies: An introduction*, Studies in Applied Mechanics, vol. 3, Elsevier, New York, 2017. - Jaak Peetre,
*Espaces d’interpolation et théorème de Soboleff*, Ann. Inst. Fourier (Grenoble)**16**(1966), no. fasc. 1, 279–317 (French). MR**221282**, DOI 10.5802/aif.232 - Augusto C. Ponce and Jean Van Schaftingen,
*The continuity of functions with $N$-th derivative measure*, Houston J. Math.**33**(2007), no. 3, 927–939. MR**2335744**, DOI 10.1080/00207178108922932 - B. Raiţă,
*$\mathrm {L}^1$-estimates and $\mathbb {A}$-weakly differentiable functions*, OxPDE Technical Report 18.01, 2018. - B. Raiţă and A. Skorobogatova,
*Continuity and canceling operators of order $n$ on $\mathbb {R}^n$*, arXiv:1903.03574 (2019). - Donald Ornstein,
*A non-equality for differential operators in the $L_{1}$ norm*, Arch. Rational Mech. Anal.**11**(1962), 40–49. MR**149331**, DOI 10.1007/BF00253928 - S. G. Samko,
*Gipersingulyarnye integraly i ikh prilozheniya*, Rostov. Gos. Univ., Rostov-on-Don, 1984 (Russian). MR**807951** - E. M. Stein,
*Editor’s note: the differentiability of functions in $\textbf {R}^{n}$*, Ann. of Math. (2)**113**(1981), no. 2, 383–385. MR**607898** - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - D. Stolyarov,
*Dorronsoro’s theorem and a slight generalization*, J. Math. Sci.**215**(2016), no. 5, 624–630. - Roger Temam and Gilbert Strang,
*Functions of bounded deformation*, Arch. Rational Mech. Anal.**75**(1980/81), no. 1, 7–21. MR**592100**, DOI 10.1007/BF00284617 - Luc Tartar,
*Imbedding theorems of Sobolev spaces into Lorentz spaces*, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8)**1**(1998), no. 3, 479–500 (English, with Italian summary). MR**1662313** - Luc Tartar,
*An introduction to Sobolev spaces and interpolation spaces*, Lecture Notes of the Unione Matematica Italiana, vol. 3, Springer, Berlin; UMI, Bologna, 2007. MR**2328004** - Jean Van Schaftingen,
*Function spaces between BMO and critical Sobolev spaces*, J. Funct. Anal.**236**(2006), no. 2, 490–516. MR**2240172**, DOI 10.1016/j.jfa.2006.03.011 - Jean Van Schaftingen,
*Limiting Sobolev inequalities for vector fields and canceling linear differential operators*, J. Eur. Math. Soc. (JEMS)**15**(2013), no. 3, 877–921. MR**3085095**, DOI 10.4171/JEMS/380 - William P. Ziemer,
*Weakly differentiable functions*, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR**1014685**, DOI 10.1007/978-1-4612-1015-3

## Additional Information

**Bogdan Raiţă**- Affiliation: University of Warwick, Zeeman Building, Coventry CV4 7HP, United Kingdom
- Email: bogdanraita@gmail.com
- Received by editor(s): October 10, 2018
- Received by editor(s) in revised form: March 27, 2019
- Published electronically: August 13, 2019
- Additional Notes: The author was supported by the Engineering and Physical Sciences Research Council Award No. EP/L015811/1. This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 757254 (SINGULARITY)
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**372**(2019), 7297-7326 - MSC (2010): Primary 26B05; Secondary 35J48
- DOI: https://doi.org/10.1090/tran/7878
- MathSciNet review: 4024554