## Energy bounds condition for intertwining operators of types $B$, $C$, and $G_2$ unitary affine vertex operator algebras

HTML articles powered by AMS MathViewer

- by Bin Gui PDF
- Trans. Amer. Math. Soc.
**372**(2019), 7371-7424 Request permission

## Abstract:

The energy bounds condition for intertwining operators of unitary rational vertex operator algebras (VOAs) was studied, first by A. Wassermann for type $A$ affine VOAs, and later by T. Loke for $c<1$ Virasoro VOAs, and by V. Toledano-Laredo for type $D$ affine VOAs. In this paper, we extend their results to affine VOAs of types $B$, $C$, and $G_2$. As a consequence, the modular tensor categories of these unitary vertex operator algebras are unitary.## References

- Detlev Buchholz and Hanns Schulz-Mirbach,
*Haag duality in conformal quantum field theory*, Rev. Math. Phys.**2**(1990), no. 1, 105–125. MR**1079298**, DOI 10.1142/S0129055X90000053 - Sebastiano Carpi, Yasuyuki Kawahigashi, Roberto Longo, and Mihály Weiner,
*From vertex operator algebras to conformal nets and back*, Mem. Amer. Math. Soc.**254**(2018), no. 1213, vi+85. MR**3796433**, DOI 10.1090/memo/1213 - Chongying Dong and James Lepowsky,
*Generalized vertex algebras and relative vertex operators*, Progress in Mathematics, vol. 112, Birkhäuser Boston, Inc., Boston, MA, 1993. MR**1233387**, DOI 10.1007/978-1-4612-0353-7 - Chongying Dong and Xingjun Lin,
*Unitary vertex operator algebras*, J. Algebra**397**(2014), 252–277. MR**3119224**, DOI 10.1016/j.jalgebra.2013.09.007 - Chongying Dong and Geoffrey Mason,
*Integrability of $C_2$-cofinite vertex operator algebras*, Int. Math. Res. Not. , posted on (2006), Art. ID 80468, 15. MR**2219226**, DOI 10.1155/IMRN/2006/80468 - E. B. Dynkin,
*Semisimple subalgebras of semisimple Lie algebras*, Mat. Sbornik N.S.**30(72)**(1952), 349–462 (3 plates) (Russian). MR**0047629** - William Fulton and Joe Harris,
*Representation theory*, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR**1153249**, DOI 10.1007/978-1-4612-0979-9 - Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky,
*On axiomatic approaches to vertex operator algebras and modules*, Mem. Amer. Math. Soc.**104**(1993), no. 494, viii+64. MR**1142494**, DOI 10.1090/memo/0494 - I. B. Frenkel and V. G. Kac,
*Basic representations of affine Lie algebras and dual resonance models*, Invent. Math.**62**(1980/81), no. 1, 23–66. MR**595581**, DOI 10.1007/BF01391662 - Igor Frenkel, James Lepowsky, and Arne Meurman,
*Vertex operator algebras and the Monster*, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR**996026** - Igor B. Frenkel and Yongchang Zhu,
*Vertex operator algebras associated to representations of affine and Virasoro algebras*, Duke Math. J.**66**(1992), no. 1, 123–168. MR**1159433**, DOI 10.1215/S0012-7094-92-06604-X - P. Goddard, A. Kent, and D. Olive,
*Unitary representations of the Virasoro and super-Virasoro algebras*, Comm. Math. Phys.**103**(1986), no. 1, 105–119. MR**826859**, DOI 10.1007/BF01464283 - Roe Goodman and Nolan R. Wallach,
*Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle*, J. Reine Angew. Math.**347**(1984), 69–133. MR**733047**, DOI 10.1515/crll.1984.347.69 - Bin Gui,
*Unitarity of the modular tensor categories associated to unitary vertex operator algebras, I*, Comm. Math. Phys.**366**(2019), no. 1, 333–396. MR**3919449**, DOI 10.1007/s00220-019-03326-6 - B. Gui,
*Unitarity of the modular tensor categories associated to unitary vertex operator algebras*, II. arXiv:1712.04931, 2017. - B. Gui,
*Categorical extensions of conformal nets*, preprint, arXiv:1812.04470, 2018. - Yi-Zhi Huang and Liang Kong,
*Full field algebras*, Comm. Math. Phys.**272**(2007), no. 2, 345–396. MR**2300247**, DOI 10.1007/s00220-007-0224-4 - Yi-Zhi Huang,
*A theory of tensor products for module categories for a vertex operator algebra. IV*, J. Pure Appl. Algebra**100**(1995), no. 1-3, 173–216. MR**1344849**, DOI 10.1016/0022-4049(95)00050-7 - Yi-Zhi Huang,
*Rigidity and modularity of vertex tensor categories*, Commun. Contemp. Math.**10**(2008), no. suppl. 1, 871–911. MR**2468370**, DOI 10.1142/S0219199708003083 - V. F. R. Jones,
*Index for subfactors*, Invent. Math.**72**(1983), no. 1, 1–25. MR**696688**, DOI 10.1007/BF01389127 - Yasuyuki Kawahigashi and Roberto Longo,
*Classification of local conformal nets. Case $c<1$*, Ann. of Math. (2)**160**(2004), no. 2, 493–522. MR**2123931**, DOI 10.4007/annals.2004.160.493 - Yasuyuki Kawahigashi, Roberto Longo, and Michael Müger,
*Multi-interval subfactors and modularity of representations in conformal field theory*, Comm. Math. Phys.**219**(2001), no. 3, 631–669. MR**1838752**, DOI 10.1007/PL00005565 - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - Victor Kac,
*Vertex algebras for beginners*, 2nd ed., University Lecture Series, vol. 10, American Mathematical Society, Providence, RI, 1998. MR**1651389**, DOI 10.1090/ulect/010 - James Lepowsky and Haisheng Li,
*Introduction to vertex operator algebras and their representations*, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR**2023933**, DOI 10.1007/978-0-8176-8186-9 - T. M. Loke,
*Operator algebras and conformal field theory of the discrete series representations of Diff ($S^1$), doctoral dissertation*, University of Cambridge, 1994. - Roberto Longo,
*Index of subfactors and statistics of quantum fields. I*, Comm. Math. Phys.**126**(1989), no. 2, 217–247. MR**1027496**, DOI 10.1007/BF02125124 - Gregory Moore and Nathan Seiberg,
*Polynomial equations for rational conformal field theories*, Phys. Lett. B**212**(1988), no. 4, 451–460. MR**962600**, DOI 10.1016/0370-2693(88)91796-0 - Akihiro Tsuchiya and Yukihiro Kanie,
*Vertex operators in conformal field theory on $\textbf {P}^1$ and monodromy representations of braid group*, Conformal field theory and solvable lattice models (Kyoto, 1986) Adv. Stud. Pure Math., vol. 16, Academic Press, Boston, MA, 1988, pp. 297–372. MR**972998**, DOI 10.2969/aspm/01610297 - V. Toledano-Laredo,
*Fusion of positive energy representations of lspin (2n)*, preprint, math/0409044, 2004. - Michael P. Tuite and Alexander Zuevsky,
*A generalized vertex operator algebra for Heisenberg intertwiners*, J. Pure Appl. Algebra**216**(2012), no. 6, 1442–1453. MR**2890514**, DOI 10.1016/j.jpaa.2011.10.025 - V. G. Turaev,
*Quantum invariants of knots and 3-manifolds*, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. MR**1292673**, DOI 10.1515/9783110883275 - A. Wassermann, Subfactors arising from positive energy representations of some infinite dimensional groups. unpublished notes, 1990.
- Antony Wassermann,
*Operator algebras and conformal field theory. III. Fusion of positive energy representations of $\textrm {LSU}(N)$ using bounded operators*, Invent. Math.**133**(1998), no. 3, 467–538. MR**1645078**, DOI 10.1007/s002220050253 - A. Wassermann,
*Kac-Moody and Virasoro algebras*, preprint, arXiv:1004.1287, 2010. - Feng Xu,
*Jones-Wassermann subfactors for disconnected intervals*, Commun. Contemp. Math.**2**(2000), no. 3, 307–347. MR**1776984**, DOI 10.1142/S0219199700000153

## Additional Information

**Bin Gui**- Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854
- MR Author ID: 1311026
- Email: bin.gui@rutgers.edu
- Received by editor(s): September 23, 2018
- Received by editor(s) in revised form: May 10, 2019
- Published electronically: August 20, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**372**(2019), 7371-7424 - MSC (2010): Primary 17B69, 81T05, 81T40
- DOI: https://doi.org/10.1090/tran/7907
- MathSciNet review: 4024556