## Lyapunov-type characterisation of exponential dichotomies with applications to the heat and Klein–Gordon equations

HTML articles powered by AMS MathViewer

- by Gong Chen and Jacek Jendrej PDF
- Trans. Amer. Math. Soc.
**372**(2019), 7461-7496 Request permission

## Abstract:

We give a sufficient condition for the existence of an exponential dichotomy for a general linear dynamical system (not necessarily invertible) in a Banach space, in discrete or continuous time. We provide applications to the backward heat equation with a potential varying in time, and to the heat equation with a finite number of slowly moving potentials. We also consider the Klein–Gordon equation with a finite number of potentials whose centres move at sublight speed with small accelerations.## References

- Luis Barreira, Davor Dragičević, and Claudia Valls,
*Lyapunov type characterization of hyperbolic behavior*, J. Differential Equations**263**(2017), no. 5, 3147–3173. MR**3655811**, DOI 10.1016/j.jde.2017.04.041 - Luís Barreira, Davor Dragičević, and Claudia Valls,
*Admissibility and hyperbolicity*, SpringerBriefs in Mathematics, Springer, Cham, 2018. MR**3791766**, DOI 10.1007/978-3-319-90110-7 - Luis Barreira and Claudia Valls,
*Stability of nonautonomous differential equations*, Lecture Notes in Mathematics, vol. 1926, Springer, Berlin, 2008. MR**2368551**, DOI 10.1007/978-3-540-74775-8 - Thierry Cazenave and Alain Haraux,
*An introduction to semilinear evolution equations*, Oxford Lecture Series in Mathematics and its Applications, vol. 13, The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors. MR**1691574** - G. Chen,
*Strichartz estimates for wave equations with charge transfer Hamiltonians*, arXiv:1610.05226 (2016). Mem. Amer. Math. Soc. (to appear). - Carmen Chicone and Yuri Latushkin,
*Evolution semigroups in dynamical systems and differential equations*, Mathematical Surveys and Monographs, vol. 70, American Mathematical Society, Providence, RI, 1999. MR**1707332**, DOI 10.1090/surv/070 - Vianney Combet,
*Multi-soliton solutions for the supercritical gKdV equations*, Comm. Partial Differential Equations**36**(2011), no. 3, 380–419. MR**2763331**, DOI 10.1080/03605302.2010.503770 - W. A. Coppel,
*Dichotomies in stability theory*, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. MR**0481196** - W. A. Coppel,
*Dichotomies and Lyapunov functions*, J. Differential Equations**52**(1984), no. 1, 58–65. MR**737963**, DOI 10.1016/0022-0396(84)90134-7 - Raphaël Côte and Yvan Martel,
*Multi-travelling waves for the nonlinear Klein-Gordon equation*, Trans. Amer. Math. Soc.**370**(2018), no. 10, 7461–7487. MR**3841855**, DOI 10.1090/tran/7303 - Raphaël Côte and Claudio Muñoz,
*Multi-solitons for nonlinear Klein-Gordon equations*, Forum Math. Sigma**2**(2014), Paper No. e15, 38. MR**3264254**, DOI 10.1017/fms.2014.13 - Pedro Duarte and Silvius Klein,
*Lyapunov exponents of linear cocycles*, Atlantis Studies in Dynamical Systems, vol. 3, Atlantis Press, Paris, 2016. Continuity via large deviations. MR**3468528**, DOI 10.2991/978-94-6239-124-6 - Michael Goldstein and Wilhelm Schlag,
*Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions*, Ann. of Math. (2)**154**(2001), no. 1, 155–203. MR**1847592**, DOI 10.2307/3062114 - James S. Howland,
*Stationary scattering theory for time-dependent Hamiltonians*, Math. Ann.**207**(1974), 315–335. MR**346559**, DOI 10.1007/BF01351346 - Yuri Latushkin and Stephen Montgomery-Smith,
*Evolutionary semigroups and Lyapunov theorems in Banach spaces*, J. Funct. Anal.**127**(1995), no. 1, 173–197. MR**1308621**, DOI 10.1006/jfan.1995.1007 - Yvan Martel,
*Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations*, Amer. J. Math.**127**(2005), no. 5, 1103–1140. MR**2170139**, DOI 10.1353/ajm.2005.0033 - Yvan Martel, Frank Merle, and Tai-Peng Tsai,
*Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations*, Comm. Math. Phys.**231**(2002), no. 2, 347–373. MR**1946336**, DOI 10.1007/s00220-002-0723-2 - Yvan Martel, Frank Merle, and Tai-Peng Tsai,
*Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations*, Duke Math. J.**133**(2006), no. 3, 405–466. MR**2228459**, DOI 10.1215/S0012-7094-06-13331-8 - J. Metcalfe, J. Sterbenz, and D. Tataru,
*Local energy decay for scalar fields on time dependent non-trapping backgrounds*, Amer. J. Math. (to appear). - Mei Ming, Frederic Rousset, and Nikolay Tzvetkov,
*Multi-solitons and related solutions for the water-waves system*, SIAM J. Math. Anal.**47**(2015), no. 1, 897–954. MR**3315224**, DOI 10.1137/140960220 - James S. Muldowney,
*Dichotomies and asymptotic behaviour for linear differential systems*, Trans. Amer. Math. Soc.**283**(1984), no. 2, 465–484. MR**737880**, DOI 10.1090/S0002-9947-1984-0737880-1 - Garyfalos Papaschinopoulos,
*Dichotomies in terms of Lyapunov functions for linear difference equations*, J. Math. Anal. Appl.**152**(1990), no. 2, 524–535. MR**1077945**, DOI 10.1016/0022-247X(90)90082-Q - Frank Räbiger and Roland Schnaubelt,
*The spectral mapping theorem for evolution semigroups on spaces of vector-valued functions*, Semigroup Forum**52**(1996), no. 2, 225–239. MR**1371805**, DOI 10.1007/BF02574098 - R. Rau,
*Hyperbolic evolution semigroups*, 1992. Thesis (Ph.D.)–University of Tübingen. - Igor Rodnianski, Wilhelm Schlag, and Avraham Soffer,
*Dispersive analysis of charge transfer models*, Comm. Pure Appl. Math.**58**(2005), no. 2, 149–216. MR**2094850**, DOI 10.1002/cpa.20066 - Roland Schnaubelt,
*Sufficient conditions for exponential stability and dichotomy of evolution equations*, Forum Math.**11**(1999), no. 5, 543–566. MR**1705902**, DOI 10.1515/form.1999.013 - Roland Schnaubelt,
*A sufficient condition for exponential dichotomy of parabolic evolution equations*, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998) Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 149–158. MR**1816443** - Marcelo Viana,
*Lectures on Lyapunov exponents*, Cambridge Studies in Advanced Mathematics, vol. 145, Cambridge University Press, Cambridge, 2014. MR**3289050**, DOI 10.1017/CBO9781139976602

## Additional Information

**Gong Chen**- Affiliation: Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada
- MR Author ID: 1003678
- Email: gc@math.toronto.edu
**Jacek Jendrej**- Affiliation: CNRS and Université Paris 13, LAGA, UMR 7539, 99 avenue J.-B. Clément, 93430 Villetaneuse, France
- MR Author ID: 1060238
- Email: jendrej@math.univ-paris13.fr
- Received by editor(s): January 2, 2019
- Received by editor(s) in revised form: May 30, 2019
- Published electronically: August 28, 2019
- Additional Notes: Part of this work was completed when the second author was visiting the University of Chicago Mathematics Department and the University of Toronto Mathematics Department. He was also partially supported by the ANR-18-CE40-0028 project ESSED

The authors would like to thank the Beijing International Center for Mathematical Research, where this work was finished. - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**372**(2019), 7461-7496 - MSC (2010): Primary 35B40; Secondary 37D99
- DOI: https://doi.org/10.1090/tran/7923
- MathSciNet review: 4024558