Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Kähler hyperbolic manifolds and Chern number inequalities


Author: Ping Li
Journal: Trans. Amer. Math. Soc. 372 (2019), 6853-6868
MSC (2010): Primary 32Q45, 57R20, 58J20.
DOI: https://doi.org/10.1090/tran/7955
Published electronically: August 28, 2019
MathSciNet review: 4024540
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show in this article that Kähler hyperbolic manifolds satisfy a family of optimal Chern number inequalities and that the equality cases can be attained by some compact ball quotients. These present restrictions to complex structures on negatively curved compact Kähler manifolds, thus providing evidence for the rigidity conjecture of S.-T. Yau. The main ingredients in our proof are Gromov’s results on the $L^2$-Hodge numbers, the $-1$-phenomenon of the $\chi _y$-genus and Hirzebruch’s proportionality principle. Similar methods can be applied to obtain parallel results on Kähler nonelliptic manifolds. In addition to these, we term a condition called “Kähler exactness”, which includes Kähler hyperbolic and nonelliptic manifolds and has been used by B.-L. Chen and X. Yang in their work, and we show that the canonical bundle of a Kähler exact manifold of the general type is ample. Some of its consequences and remarks are discussed as well.


References [Enhancements On Off] (What's this?)

References
  • M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) Soc. Math. France, Paris, 1976, pp. 43–72. Astérisque, No. 32-33. MR 0420729
  • Werner Ballmann, Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2006. MR 2243012
  • Jianguo Cao and Frederico Xavier, Kähler parabolicity and the Euler number of compact manifolds of non-positive sectional curvature, Math. Ann. 319 (2001), no. 3, 483–491. MR 1819879, DOI https://doi.org/10.1007/PL00004444
  • Shiing-shen Chern, On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955), 117–126. MR 75647, DOI https://doi.org/10.1007/BF02960745
  • Bing-Long Chen and Xiaokui Yang, Compact Kähler manifolds homotopic to negatively curved Riemannian manifolds, Math. Ann. 370 (2018), no. 3-4, 1477–1489. MR 3770171, DOI https://doi.org/10.1007/s00208-017-1521-7
  • B.-L. Chen and X. Yang, On Euler characteristic and fundamental groups of compact manifolds, arXiv:1711.03309v2 (2018).
  • Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. MR 1841091
  • O. Debarre, Cohomological characterizations of the complex projective space, arXiv:1512.04321 (2015).
  • Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • M. Gromov, Kähler hyperbolicity and $L_2$-Hodge theory, J. Differential Geom. 33 (1991), no. 1, 263–292. MR 1085144
  • F. Hirzebruch, Characteristic numbers of homogeneous domains, Seminars on Analytic Functions, vol. 2, Institute for Advanced Studies, Princeton, NJ, 1957, pp. 92–104.
  • Friedrich Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 129–144 (German). MR 0103280
  • F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition, Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. MR 0202713
  • F. Hirzebruch, On the Euler characteristic of manifolds with $c_1=0$. A letter to V. Gritsenko, Algebra i Analiz 11 (1999), no. 5, 126–129; English transl., St. Petersburg Math. J. 11 (2000), no. 5, 805–807. MR 1734349
  • Jürgen Jost and Kang Zuo, Vanishing theorems for $L^2$-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry, Comm. Anal. Geom. 8 (2000), no. 1, 1–30. MR 1730897, DOI https://doi.org/10.4310/CAG.2000.v8.n1.a1
  • Shoshichi Kobayashi, Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 318, Springer-Verlag, Berlin, 1998. MR 1635983
  • Ping Li, $-1$-phenomena for the pluri $\chi _y$-genus and elliptic genus, Pacific J. Math. 273 (2015), no. 2, 331–351. MR 3317769, DOI https://doi.org/10.2140/pjm.2015.273.331
  • Ping Li, The Hirzebruch $\chi _y$-genus and Poincaré polynomial revisited, Commun. Contemp. Math. 19 (2017), no. 5, 1650048, 19. MR 3670789, DOI https://doi.org/10.1142/S0219199716500486
  • Anatoly S. Libgober and John W. Wood, Uniqueness of the complex structure on Kähler manifolds of certain homotopy types, J. Differential Geom. 32 (1990), no. 1, 139–154. MR 1064869
  • Wolfgang Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649
  • Xiaonan Ma and George Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, vol. 254, Birkhäuser Verlag, Basel, 2007. MR 2339952
  • M. S. Narasimhan and S. Ramanan, Generalised Prym varieties as fixed points, J. Indian Math. Soc. (N.S.) 39 (1975), 1–19 (1976). MR 424819
  • S. M. Salamon, On the cohomology of Kähler and hyper-Kähler manifolds, Topology 35 (1996), no. 1, 137–155. MR 1367278, DOI https://doi.org/10.1016/0040-9383%2895%2900006-2
  • S. M. Salamon, Cohomology of Kähler manifolds with $c_1=0$, Manifolds and geometry (Pisa, 1993) Sympos. Math., XXXVI, Cambridge Univ. Press, Cambridge, 1996, pp. 294–310. MR 1410078
  • Yum Tong Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2) 112 (1980), no. 1, 73–111. MR 584075, DOI https://doi.org/10.2307/1971321
  • Shing Tung Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798–1799. MR 451180, DOI https://doi.org/10.1073/pnas.74.5.1798
  • Shing Tung Yau, Problem section, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 669–706. MR 645762
  • Fangyang Zheng, First Pontrjagin form, rigidity and strong rigidity of nonpositively curved Kähler surface of general type, Math. Z. 220 (1995), no. 2, 159–169. MR 1355023, DOI https://doi.org/10.1007/BF02572607
  • Fangyang Zheng, Kodaira dimensions and hyperbolicity of nonpositively curved compact Kähler manifolds, Comment. Math. Helv. 77 (2002), no. 2, 221–234. MR 1915039, DOI https://doi.org/10.1007/s00014-002-8337-z

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32Q45, 57R20, 58J20.

Retrieve articles in all journals with MSC (2010): 32Q45, 57R20, 58J20.


Additional Information

Ping Li
Affiliation: School of Mathematical Sciences, Tongji University, Shanghai 200092, People’s Republic of China
MR Author ID: 902503
Email: pingli@tongji.edu.cn; pinglimath@gmail.com

Keywords: Kähler hyperbolic manifold, Kähler nonelliptic manifold, Chern number inequality, Hirzebruch $\chi _y$-genus, Hirzebruch’s proportionality principle, negative sectional curvature, nonpositive sectional curvature, $L^2$-Hodge number, Kobayashi hyperbolicity.
Received by editor(s): May 26, 2018
Published electronically: August 28, 2019
Additional Notes: The author was partially supported by the National Natural Science Foundation of China (Grant No. 11722109).
Part of this article was completed when the author visited the Fields Institute in Toronto in May 2018. The author would like to thank the Institute for the hospitality.
Article copyright: © Copyright 2019 American Mathematical Society