## Quadratic modules, $C^*$-algebras, and free convexity

HTML articles powered by AMS MathViewer

- by Vadim Alekseev, Tim Netzer and Andreas Thom PDF
- Trans. Amer. Math. Soc.
**372**(2019), 7525-7539 Request permission

## Abstract:

Given a quadratic module, we construct its universal $C^*$-algebra, and then use methods and notions from the theory of $C^*$-algebras to study the quadratic module. We define residually finite-dimensional quadratic modules, and characterize them in various ways, in particular via a Positivstellensatz. We give unified proofs for several existing strong Positivstellensätze, and prove some new ones. Our approach also leads naturally to interesting new examples in free convexity. We show that the usual notion of a free convex hull is not able to detect residual finite-dimensionality. We thus study a notion of free convexity which is coordinate-free. We characterize semialgebraicity of free convex hulls of semialgebraic sets, and show that they are not always semialgebraic, even at scalar level. This also shows that the membership problem for quadratic modules (a well-studied problem in Real Algebraic Geometry) has a negative answer in the non-commutative setup.## References

- William Arveson,
*An invitation to $C^*$-algebras*, Graduate Texts in Mathematics, No. 39, Springer-Verlag, New York-Heidelberg, 1976. MR**0512360**, DOI 10.1007/978-1-4612-6371-5 - Doris Augustin,
*The membership problem for finitely generated quadratic modules in the univariate case*, J. Pure Appl. Algebra**216**(2012), no. 10, 2204–2212. MR**2925814**, DOI 10.1016/j.jpaa.2012.02.004 - Cédric Béguin, Alain Valette, and Andrzej Zuk,
*On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper’s operator*, J. Geom. Phys.**21**(1997), no. 4, 337–356. MR**1436310**, DOI 10.1016/S0393-0440(96)00024-1 - Bachir Bekka, Pierre de la Harpe, and Alain Valette,
*Kazhdan’s property (T)*, New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR**2415834**, DOI 10.1017/CBO9780511542749 - Jacek Bochnak, Michel Coste, and Marie-Françoise Roy,
*Real algebraic geometry*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR**1659509**, DOI 10.1007/978-3-662-03718-8 - Man Duen Choi,
*The full $C^{\ast }$-algebra of the free group on two generators*, Pacific J. Math.**87**(1980), no. 1, 41–48. MR**590864**, DOI 10.2140/pjm.1980.87.41 - Jakob Cimprič,
*A representation theorem for Archimedean quadratic modules on $*$-rings*, Canad. Math. Bull.**52**(2009), no. 1, 39–52. MR**2494309**, DOI 10.4153/CMB-2009-005-4 - Edward G. Effros and Soren Winkler,
*Matrix convexity: operator analogues of the bipolar and Hahn-Banach theorems*, J. Funct. Anal.**144**(1997), no. 1, 117–152. MR**1430718**, DOI 10.1006/jfan.1996.2958 - Søren Eilers and Ruy Exel,
*Finite-dimensional representations of the soft torus*, Proc. Amer. Math. Soc.**130**(2002), no. 3, 727–731. MR**1866027**, DOI 10.1090/S0002-9939-01-06150-0 - Ky Fan,
*Some remarks on commutators of matrices*, Arch. Math. (Basel)**5**(1954), 102–107. MR**64727**, DOI 10.1007/BF01899324 - Tobias Fritz, Tim Netzer, and Andreas Thom,
*Can you compute the operator norm?*, Proc. Amer. Math. Soc.**142**(2014), no. 12, 4265–4276. MR**3266994**, DOI 10.1090/S0002-9939-2014-12170-8 - B. Helffer and J. Sjöstrand,
*Analyse semi-classique pour l’équation de Harper. II. Comportement semi-classique près d’un rationnel*, Mém. Soc. Math. France (N.S.)**40**(1990), 139 (French, with English summary). MR**1052373** - William Helton, Igor Klep, and Scott McCullough,
*Free convex algebraic geometry*, Semidefinite optimization and convex algebraic geometry, MOS-SIAM Ser. Optim., vol. 13, SIAM, Philadelphia, PA, 2013, pp. 341–405. MR**3050247** - J. William Helton, Igor Klep, and Scott McCullough,
*The convex Positivstellensatz in a free algebra*, Adv. Math.**231**(2012), no. 1, 516–534. MR**2935397**, DOI 10.1016/j.aim.2012.04.028 - J. William Helton, Igor Klep, and Scott McCullough,
*The tracial Hahn-Banach theorem, polar duals, matrix convex sets, and projections of free spectrahedra*, J. Eur. Math. Soc. (JEMS)**19**(2017), no. 6, 1845–1897. MR**3646877**, DOI 10.4171/JEMS/707 - J. William Helton and Scott McCullough,
*Free convex sets defined by rational expressions have LMI representations*, J. Convex Anal.**21**(2014), no. 2, 425–448. MR**3236407** - J. William Helton, Scott A. McCullough, and Mihai Putinar,
*A non-commutative Positivstellensatz on isometries*, J. Reine Angew. Math.**568**(2004), 71–80. MR**2034923**, DOI 10.1515/crll.2004.019 - Douglas R. Hofstadter,
*Energy levels and wavefunctions of Bloch electrons in rational and irrational magnetic fields*, Physical Review B**14**(1976), no. 6, 2239-?2249., DOI 10.1103/PhysRevB.14.2239 - A. S. Kechris,
*Unitary representations and modular actions*, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)**326**(2005), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 13, 97–144, 281–282 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.)**140**(2007), no. 3, 398–425. MR**2183218**, DOI 10.1007/s10958-007-0449-y - Eberhard Kirchberg,
*On nonsemisplit extensions, tensor products and exactness of group $C^*$-algebras*, Invent. Math.**112**(1993), no. 3, 449–489. MR**1218321**, DOI 10.1007/BF01232444 - Alexander Lubotzky and Yehuda Shalom,
*Finite representations in the unitary dual and Ramanujan groups*, Discrete geometric analysis, Contemp. Math., vol. 347, Amer. Math. Soc., Providence, RI, 2004, pp. 173–189. MR**2077037**, DOI 10.1090/conm/347/06272 - Murray Marshall,
*Positive polynomials and sums of squares*, Mathematical Surveys and Monographs, vol. 146, American Mathematical Society, Providence, RI, 2008. MR**2383959**, DOI 10.1090/surv/146 - Tim Netzer and Andreas Thom,
*Real closed separation theorems and applications to group algebras*, Pacific J. Math.**263**(2013), no. 2, 435–452. MR**3068552**, DOI 10.2140/pjm.2013.263.435 - Vern Paulsen,
*Completely bounded maps and operator algebras*, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR**1976867** - Victoria Powers and Claus Scheiderer,
*The moment problem for non-compact semialgebraic sets*, Adv. Geom.**1**(2001), no. 1, 71–88. MR**1823953**, DOI 10.1515/advg.2001.005 - Alexander Prestel and Charles N. Delzell,
*Positive polynomials*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. From Hilbert’s 17th problem to real algebra. MR**1829790**, DOI 10.1007/978-3-662-04648-7 - A. Barelli, J. Bellissard, and R. Rammal,
*Spectrum of $2$D Bloch electrons in a periodic magnetic field: algebraic approach*, J. Physique**51**(1990), no. 19, 2167–2185 (English, with French summary). MR**1156191**, DOI 10.1051/jphys:0199000510190216700 - Claus Scheiderer,
*Positivity and sums of squares: a guide to recent results*, Emerging applications of algebraic geometry, IMA Vol. Math. Appl., vol. 149, Springer, New York, 2009, pp. 271–324. MR**2500469**, DOI 10.1007/978-0-387-09686-5_{8} - Konrad Schmüdgen,
*Noncommutative real algebraic geometry—some basic concepts and first ideas*, Emerging applications of algebraic geometry, IMA Vol. Math. Appl., vol. 149, Springer, New York, 2009, pp. 325–350. MR**2500470**, DOI 10.1007/978-0-387-09686-5_{9}

## Additional Information

**Vadim Alekseev**- Affiliation: Institut für Geometrie, TU Dresden, 01062 Dresden, Germany
- Email: vadim.alekseev@tu-dresden.de
**Tim Netzer**- Affiliation: Department of Mathematics, University of Innsbruck, Innsbruck, Austria
- Email: tim.netzer@uibk.ac.at
**Andreas Thom**- Affiliation: Institut für Geometrie, TU Dresden, 01062 Dresden, Germany
- MR Author ID: 780176
- ORCID: 0000-0002-7245-2861
- Email: andreas.thom@tu-dresden.de
- Received by editor(s): April 11, 2016
- Received by editor(s) in revised form: March 7, 2017
- Published electronically: September 6, 2019
- Additional Notes: This research was supported by ERC Starting Grant No. 277728 and the ERC Consolidator Grant No. 681207.
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**372**(2019), 7525-7539 - MSC (2010): Primary 14P10, 46L89
- DOI: https://doi.org/10.1090/tran/7230
- MathSciNet review: 4029672