Non-tangential limits and the slope of trajectories of holomorphic semigroups of the unit disc
HTML articles powered by AMS MathViewer
- by Filippo Bracci, Manuel D. Contreras, Santiago Díaz-Madrigal and Hervé Gaussier PDF
- Trans. Amer. Math. Soc. 373 (2020), 939-969 Request permission
Abstract:
Let $\Delta \subsetneq \mathbb {C}$ be a simply connected domain, let $f:\mathbb {D} \to \Delta$ be a Riemann map, and let $\{z_k\}\subset \Delta$ be a compactly divergent sequence. Using Gromov’s hyperbolicity theory, we show that $\{f^{-1}(z_k)\}$ converges non-tangentially to a point of $\partial \mathbb {D}$ if and only if there exists a simply connected domain $U\subsetneq \mathbb {C}$ such that $\Delta \subset U$ and $\Delta$ contains a tubular hyperbolic neighborhood of a geodesic of $U$ and $\{z_k\}$ is eventually contained in a smaller tubular hyperbolic neighborhood of the same geodesic. As a consequence we show that if $(\phi _t)$ is a non-elliptic semigroup of holomorphic self-maps of $\mathbb {D}$ with Koenigs function $h$ and $h(\mathbb {D})$ contains a vertical Euclidean sector, then $\phi _t(z)$ converges to the Denjoy-Wolff point non-tangentially for every $z\in \mathbb {D}$ as $t\to +\infty$. Using new localization results for the hyperbolic distance, we also construct an example of a parabolic semigroup which converges non-tangentially to the Denjoy-Wolff point but is oscillating, in the sense that the slope of the trajectories is not a single point.References
- Marco Abate, Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry, Mediterranean Press, Rende, 1989. MR 1098711
- Dov Aharonov, Mark Elin, Simeon Reich, and David Shoikhet, Parametric representations of semi-complete vector fields on the unit balls in $\textbf {C}^n$ and in Hilbert space, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10 (1999), no. 4, 229–253 (English, with English and Italian summaries). MR 1767931
- Leandro Arosio and Filippo Bracci, Canonical models for holomorphic iteration, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3305–3339. MR 3451878, DOI 10.1090/tran/6593
- Earl Berkson and Horacio Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), no. 1, 101–115. MR 480965
- Dimitrios Betsakos, On the asymptotic behavior of the trajectories of semigroups of holomorphic functions, J. Geom. Anal. 26 (2016), no. 1, 557–569. MR 3441527, DOI 10.1007/s12220-015-9562-1
- Filippo Bracci, Manuel D. Contreras, and Santiago Díaz-Madrigal, Topological invariants for semigroups of holomorphic self-maps of the unit disk, J. Math. Pures Appl. (9) 107 (2017), no. 1, 78–99. MR 3583570, DOI 10.1016/j.matpur.2016.04.008
- Filippo Bracci, Manuel D. Contreras, Santiago Díaz-Madrigal, and Hervé Gaussier, A characterization of orthogonal convergence in simply connected domains, J. Geom. Anal. 29 (2019), no. 4, 3160–3175. MR 4015433, DOI 10.1007/s12220-018-00109-8
- Manuel D. Contreras and Santiago Díaz-Madrigal, Analytic flows on the unit disk: angular derivatives and boundary fixed points, Pacific J. Math. 222 (2005), no. 2, 253–286. MR 2225072, DOI 10.2140/pjm.2005.222.253
- Manuel D. Contreras, Santiago Díaz-Madrigal, and Christian Pommerenke, Some remarks on the Abel equation in the unit disk, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 623–634. MR 2352725, DOI 10.1112/jlms/jdm013
- Manuel D. Contreras, Santiago Díaz-Madrigal, and Pavel Gumenyuk, Slope problem for trajectories of holomorphic semigroups in the unit disk, Comput. Methods Funct. Theory 15 (2015), no. 1, 117–124. MR 3318309, DOI 10.1007/s40315-014-0092-9
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999, DOI 10.1017/CBO9780511566134
- Carl C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), no. 1, 69–95. MR 607108, DOI 10.1090/S0002-9947-1981-0607108-9
- Mark Elin, Dmitry Khavinson, Simeon Reich, and David Shoikhet, Linearization models for parabolic dynamical systems via Abel’s functional equation, Ann. Acad. Sci. Fenn. Math. 35 (2010), no. 2, 439–472. MR 2731701, DOI 10.5186/aasfm.2010.3528
- Mark Elin and David Shoikhet, Linearization models for complex dynamical systems, Operator Theory: Advances and Applications, vol. 208, Birkhäuser Verlag, Basel, 2010. Topics in univalent functions, functional equations and semigroup theory; Linear Operators and Linear Systems. MR 2683159, DOI 10.1007/978-3-0346-0509-0
- Mark Elin, Simeon Reich, David Shoikhet, and Fiana Yacobzon, Asymptotic behavior of one-parameter semigroups and rigidity of holomorphic generators, Complex Anal. Oper. Theory 2 (2008), no. 1, 55–86. MR 2390674, DOI 10.1007/s11785-007-0027-9
- Étienne Ghys and Pierre de la Harpe, Espaces métriques hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 27–45 (French). MR 1086650, DOI 10.1007/978-1-4684-9167-8_{2}
- Georgios Kelgiannis, Trajectories of semigroups of holomorphic functions and harmonic measure, J. Math. Anal. Appl. 474 (2019), no. 2, 1364–1374. MR 3926171, DOI 10.1016/j.jmaa.2019.02.024
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
- Ch. Pommerenke, Boundary behaviour of conformal mappings, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 313–331. MR 623475
- David Shoikhet, Semigroups in geometrical function theory, Kluwer Academic Publishers, Dordrecht, 2001. MR 1849612, DOI 10.1007/978-94-015-9632-9
- Aristomenis G. Siskakis, Semigroups of composition operators on spaces of analytic functions, a review, Studies on composition operators (Laramie, WY, 1996) Contemp. Math., vol. 213, Amer. Math. Soc., Providence, RI, 1998, pp. 229–252. MR 1601120, DOI 10.1090/conm/213/02862
Additional Information
- Filippo Bracci
- Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133, Roma, Italia
- MR Author ID: 631111
- Email: fbracci@mat.uniroma2.it
- Manuel D. Contreras
- Affiliation: Departamento de Matemática Aplicada II and IMUS, Universidad de Sevilla, Camino de los Descubrimientos, s/n, Sevilla, 41092, Spain
- MR Author ID: 335888
- Email: contreras@us.es
- Santiago Díaz-Madrigal
- Affiliation: Departamento de Matemática Aplicada II and IMUS, Universidad de Sevilla, Camino de los Descubrimientos, s/n, Sevilla, 41092, Spain
- MR Author ID: 310764
- Email: madrigal@us.es
- Hervé Gaussier
- Affiliation: Université Grenoble Alpes, CNRS, IF, F-38000 Grenoble, France
- Email: herve.gaussier@univ-grenoble-alpes.fr
- Received by editor(s): May 22, 2018
- Received by editor(s) in revised form: March 19, 2019
- Published electronically: November 5, 2019
- Additional Notes: The first author was partially supported by the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006
The second and third authors were partially supported by the Ministerio de Economía y Competitividad and the European Union (FEDER) MTM2015-63699-P and by La Consejería de Educación y Ciencia de la Junta de Andalucía
The fourth author was partially supported by ERC ALKAGE - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 939-969
- MSC (2010): Primary 37C10, 30C35; Secondary 30D05, 30C80, 37F99, 37C25
- DOI: https://doi.org/10.1090/tran/7977
- MathSciNet review: 4068255