Simple-minded systems and reduction for negative Calabi-Yau triangulated categories
HTML articles powered by AMS MathViewer
- by Raquel Coelho Simões and David Pauksztello PDF
- Trans. Amer. Math. Soc. 373 (2020), 2463-2498 Request permission
Abstract:
We develop the basic properties of $w$-simple-minded systems in $(-w)$-Calabi-Yau triangulated categories for $w \geqslant 1$. We show that the theory of simple-minded systems exhibits striking parallels with that of cluster-tilting objects. The main result is a reduction technique for negative Calabi-Yau triangulated categories. Our construction provides an inductive technique for constructing simple-minded systems.References
- Takuma Aihara and Osamu Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668. MR 2927802, DOI 10.1112/jlms/jdr055
- Salah Al-Nofayee, Equivalences of derived categories for selfinjective algebras, J. Algebra 313 (2007), no. 2, 897–904. MR 2329575, DOI 10.1016/j.jalgebra.2007.03.002
- Claire Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525–2590 (English, with English and French summaries). MR 2640929, DOI 10.5802/aif.2499
- S. Asai, Semibricks, International Mathematics Research Notices (IMRN) (to appear), also arXiv:1610.05860, 2016
- Maurice Auslander and Idun Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69–74. MR 389977, DOI 10.1090/S0002-9939-1975-0389977-6
- M. Auslander and Sverre O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61–122. MR 591246, DOI 10.1016/0021-8693(80)90113-1
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618. MR 2249625, DOI 10.1016/j.aim.2005.06.003
- Aaron Chan, Steffen Koenig, and Yuming Liu, Simple-minded systems, configurations and mutations for representation-finite self-injective algebras, J. Pure Appl. Algebra 219 (2015), no. 6, 1940–1961. MR 3299714, DOI 10.1016/j.jpaa.2014.07.018
- Raquel Coelho Simões, Hom-configurations and noncrossing partitions, J. Algebraic Combin. 35 (2012), no. 2, 313–343. MR 2886293, DOI 10.1007/s10801-011-0305-5
- R. Coelho Simões, On a triangulated category which models positive noncrossing partitions, PhD thesis, University of Leeds, March 2012.
- Raquel Coelho Simões, Hom-configurations in triangulated categories generated by spherical objects, J. Pure Appl. Algebra 219 (2015), no. 8, 3322–3336. MR 3320222, DOI 10.1016/j.jpaa.2014.10.017
- Raquel Coelho Simões, Mutations of simple-minded systems in Calabi-Yau categories generated by a spherical object, Forum Math. 29 (2017), no. 5, 1065–1081. MR 3692027, DOI 10.1515/forum-2016-0015
- Raquel Coelho Simões and David Pauksztello, Torsion pairs in a triangulated category generated by a spherical object, J. Algebra 448 (2016), 1–47. MR 3438304, DOI 10.1016/j.jalgebra.2015.09.011
- Alex Dugas, Tilting mutation of weakly symmetric algebras and stable equivalence, Algebr. Represent. Theory 17 (2014), no. 3, 863–884. MR 3254773, DOI 10.1007/s10468-013-9422-2
- Alex Dugas, Torsion pairs and simple-minded systems in triangulated categories, Appl. Categ. Structures 23 (2015), no. 3, 507–526. MR 3351092, DOI 10.1007/s10485-014-9365-8
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI 10.1090/S0894-0347-01-00385-X
- Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124, DOI 10.1017/CBO9780511629228
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
- Thorsten Holm and Peter Jørgensen, Triangulated categories: definitions, properties, and examples, Triangulated categories, London Math. Soc. Lecture Note Ser., vol. 375, Cambridge Univ. Press, Cambridge, 2010, pp. 1–51. MR 2681706, DOI 10.1017/CBO9781139107075.002
- Thorsten Holm and Peter Jørgensen, Cluster tilting vs. weak cluster tilting in Dynkin type A infinity, Forum Math. 27 (2015), no. 2, 1117–1137. MR 3334096, DOI 10.1515/forum-2012-0093
- A. Hubery, Notes on the octahedral axiom, unpublished manuscript.
- Osamu Iyama and Michael Wemyss, Reduction of triangulated categories and maximal modification algebras for $cA_n$ singularities, J. Reine Angew. Math. 738 (2018), 149–202. MR 3794891, DOI 10.1515/crelle-2015-0031
- Osamu Iyama and Dong Yang, Silting reduction and Calabi-Yau reduction of triangulated categories, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7861–7898. MR 3852451, DOI 10.1090/tran/7213
- Osamu Iyama and Yuji Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117–168. MR 2385669, DOI 10.1007/s00222-007-0096-4
- Peter Jørgensen, Auslander-Reiten triangles in subcategories, J. K-Theory 3 (2009), no. 3, 583–601. MR 2507732, DOI 10.1017/is008007021jkt056
- Steffen Koenig and Yuming Liu, Simple-minded systems in stable module categories, Q. J. Math. 63 (2012), no. 3, 653–674. MR 2967168, DOI 10.1093/qmath/har009
- Steffen Koenig and Dong Yang, Silting objects, simple-minded collections, $t$-structures and co-$t$-structures for finite-dimensional algebras, Doc. Math. 19 (2014), 403–438. MR 3178243
- Z.-W. Li, The realisation of Verdier quotient as triangulated subfactors, arXiv:1612.08340, 2016.
- Roberto Martínez-Villa, Properties that are left invariant under stable equivalence, Comm. Algebra 18 (1990), no. 12, 4141–4169. MR 1084445, DOI 10.1080/00927872.1990.12098256
- Hiroyuki Nakaoka, A simultaneous generalization of mutation and recollement of cotorsion pairs on a triangulated category, Appl. Categ. Structures 26 (2018), no. 3, 491–544. MR 3800884, DOI 10.1007/s10485-017-9501-3
- Amnon Neeman, Some new axioms for triangulated categories, J. Algebra 139 (1991), no. 1, 221–255. MR 1106349, DOI 10.1016/0021-8693(91)90292-G
- Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507, DOI 10.1515/9781400837212
- Zygmunt Pogorzały, Algebras stably equivalent to self-injective special biserial algebras, Comm. Algebra 22 (1994), no. 4, 1127–1160. MR 1261252, DOI 10.1080/00927879408824898
- I. Reiten and M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), no. 2, 295–366. MR 1887637, DOI 10.1090/S0894-0347-02-00387-9
- Christine Riedtmann, Representation-finite self-injective algebras of class $A_{n}$, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 449–520. MR 607169
- M. Saorín and A. Zvonareva, Lifting of recollements and gluing of partial silting sets, arXiv:1809.03243, 2018.
- Jiaqun Wei, Relative singularity categories, Gorenstein objects and silting theory, J. Pure Appl. Algebra 222 (2018), no. 8, 2310–2322. MR 3771862, DOI 10.1016/j.jpaa.2017.09.014
- Panyue Zhou, Jinde Xu, and Baiyu Ouyang, Mutation pairs and quotient categories of abelian categories, Comm. Algebra 45 (2017), no. 1, 392–410. MR 3556582, DOI 10.1080/00927872.2016.1175581
- Yu Zhou and Bin Zhu, $T$-structures and torsion pairs in a 2-Calabi-Yau triangulated category, J. Lond. Math. Soc. (2) 89 (2014), no. 1, 213–234. MR 3174741, DOI 10.1112/jlms/jdt059
- Panyue Zhou and Bin Zhu, Triangulated quotient categories revisited, J. Algebra 502 (2018), 196–232. MR 3774890, DOI 10.1016/j.jalgebra.2018.01.031
Additional Information
- Raquel Coelho Simões
- Affiliation: Centro de Análise Funcional, Estruturas Lineares e Aplicações, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C6, Piso 2, 1749-016, Lisboa, Portugal
- Email: rcoelhosimoes@campus.ul.pt
- David Pauksztello
- Affiliation: Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, United Kingdom
- MR Author ID: 833009
- Email: d.pauksztello@lancaster.ac.uk
- Received by editor(s): September 13, 2018
- Received by editor(s) in revised form: July 19, 2019
- Published electronically: January 7, 2020
- Additional Notes: The first author was supported by Fundação para a Ciência e Tecnologia through Grant SFRH/BPD/90538/2012 and Project UID/MAT/04721/2013.
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 2463-2498
- MSC (2010): Primary 18E30, 16G10
- DOI: https://doi.org/10.1090/tran/8002
- MathSciNet review: 4069225