On certain isogenies between K3 surfaces
HTML articles powered by AMS MathViewer
- by Chiara Camere and Alice Garbagnati PDF
- Trans. Amer. Math. Soc. 373 (2020), 2913-2931 Request permission
Abstract:
We will prove that there are infinitely many families of K3 surfaces which both admit a finite symplectic automorphism and are (desingularizations of) quotients of other K3 surfaces by a symplectic automorphism. These families have an unexpectedly high dimension. We apply this result to construct “special” isogenies between K3 surfaces which are not Galois covers between K3 surfaces but are obtained by composing cyclic Galois covers. In the case of involutions, for any $n\in \mathbb {N}_{>0}$ we determine the transcendental lattices of the K3 surfaces which are $2^n:1$ isogenous (by the mentioned “special” isogeny) to other K3 surfaces.References
- Samuel Boissière, Alessandra Sarti, and Davide Cesare Veniani, On prime degree isogenies between K3 surfaces, Rend. Circ. Mat. Palermo (2) 66 (2017), no. 1, 3–18. MR 3690544, DOI 10.1007/s12215-016-0270-x
- Nikolay Buskin, Every rational Hodge isometry between two $K3$ surfaces is algebraic, J. Reine Angew. Math. 755 (2019), 127–150. MR 4015230, DOI 10.1515/crelle-2017-0027
- Alice Garbagnati, Elliptic K3 surfaces with abelian and dihedral groups of symplectic automorphisms, Comm. Algebra 41 (2013), no. 2, 583–616. MR 3011784, DOI 10.1080/00927872.2011.621006
- Alice Garbagnati, On K3 surface quotients of K3 or Abelian surfaces, Canad. J. Math. 69 (2017), no. 2, 338–372. MR 3612089, DOI 10.4153/CJM-2015-058-1
- Alice Garbagnati and Alessandra Sarti, Symplectic automorphisms of prime order on $K3$ surfaces, J. Algebra 318 (2007), no. 1, 323–350. MR 2363136, DOI 10.1016/j.jalgebra.2007.04.017
- Alice Garbagnati and Alessandra Sarti, Projective models of $K3$ surfaces with an even set, Adv. Geom. 8 (2008), no. 3, 413–440. MR 2427468, DOI 10.1515/ADVGEOM.2008.027
- Alice Garbagnati and Alessandra Sarti, Elliptic fibrations and symplectic automorphisms on $K3$ surfaces, Comm. Algebra 37 (2009), no. 10, 3601–3631. MR 2561866, DOI 10.1080/00927870902828785
- Bert van Geemen and Alessandra Sarti, Nikulin involutions on $K3$ surfaces, Math. Z. 255 (2007), no. 4, 731–753. MR 2274533, DOI 10.1007/s00209-006-0047-6
- Kenji Hashimoto, Finite symplectic actions on the $K3$ lattice, Nagoya Math. J. 206 (2012), 99–153. MR 2926486, DOI 10.1215/00277630-1548511
- Daniel Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, vol. 158, Cambridge University Press, Cambridge, 2016. MR 3586372, DOI 10.1017/CBO9781316594193
- Daniel Huybrechts, Motives of isogenous K3 surfaces, Comment. Math. Helv. 94 (2019), no. 3, 445–458. MR 4014777, DOI 10.4171/CMH/465
- Hiroshi Inose, Defining equations of singular $K3$ surfaces and a notion of isogeny, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) Kinokuniya Book Store, Tokyo, 1978, pp. 495–502. MR 578868
- Robert Laterveer, A family of $K3$ surfaces having finite-dimensional motive, Arch. Math. (Basel) 106 (2016), no. 6, 515–524. MR 3504185, DOI 10.1007/s00013-016-0883-5
- R. Miranda, D.R. Morrison, Embeddings of integral quadratic forms, preprint available at https://www.math.colostate.edu//$\sim$miranda/preprints/eiqf.pdf.
- D. R. Morrison, On $K3$ surfaces with large Picard number, Invent. Math. 75 (1984), no. 1, 105–121. MR 728142, DOI 10.1007/BF01403093
- S. Mukai, On the moduli space of bundles on $K3$ surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413. MR 893604
- Shigeru Mukai, Finite groups of automorphisms of $K3$ surfaces and the Mathieu group, Invent. Math. 94 (1988), no. 1, 183–221. MR 958597, DOI 10.1007/BF01394352
- V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
- V. V. Nikulin, Finite groups of automorphisms of Kählerian $K3$ surfaces, Trudy Moskov. Mat. Obshch. 38 (1979), 75–137 (Russian). MR 544937
- V. V. Nikulin, On correspondences between surfaces of $K3$ type, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 2, 402–411, 448 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 2, 375–383. MR 897004, DOI 10.1070/IM1988v030n02ABEH001018
- C. Pedrini, Bloch’s conjecture and valences of correspondences for K3 surfaces, arXiv:1510.05832v1, 2005.
- B. Saint-Donat, Projective models of $K-3$ surfaces, Amer. J. Math. 96 (1974), 602–639. MR 364263, DOI 10.2307/2373709
- E. R. Shafarevitch, Le théorème de Torelli pour les surfaces algébriques de type $K3$, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 413–417 (French). MR 0419459
Additional Information
- Chiara Camere
- Affiliation: Università degli Studi di Milano, Dipartimento di Matematica, via Cesare Saldini 50, 20133 Milano, Italy
- Email: chiara.camere@unimi.it
- Alice Garbagnati
- Affiliation: Università degli Studi di Milano, Dipartimento di Matematica, via Cesare Saldini 50, 20133 Milano, Italy
- MR Author ID: 826065
- Email: alice.garbagnati@unimi.it
- Received by editor(s): June 5, 2019
- Received by editor(s) in revised form: July 22, 2019, and September 18, 2019
- Published electronically: January 28, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 2913-2931
- MSC (2010): Primary 14J28, 14J50; Secondary 14J10
- DOI: https://doi.org/10.1090/tran/8022
- MathSciNet review: 4069236