Hausdorff dimension of non-conical limit sets
HTML articles powered by AMS MathViewer
- by Michael Kapovich and Beibei Liu PDF
- Trans. Amer. Math. Soc. 373 (2020), 7207-7224 Request permission
Abstract:
Geometrically infinite Kleinian groups have non-conical limit sets with the cardinality of the continuum. In this paper, we construct a geometrically infinite Fuchsian group such that the Hausdorff dimension of the non-conical limit set equals zero. For finitely generated, geometrically infinite Kleinian groups, we prove that the Hausdorff dimension of the non-conical limit set is positive.References
- James W. Anderson, Kurt Falk, and Pekka Tukia, Conformal measures associated to ends of hyperbolic $n$-manifolds, Q. J. Math. 58 (2007), no. 1, 1–15. MR 2305045, DOI 10.1093/qmath/hal019
- Lars V. Ahlfors, Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 251–254. MR 194970, DOI 10.1073/pnas.55.2.251
- I. Agol, Tameness of hyperbolic 3-manifolds, arXiv, math.GT/0405568, 2004.
- A. F. Beardon, The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math. 88 (1966), 722–736. MR 199385, DOI 10.2307/2373151
- Alan F. Beardon and Bernard Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1–12. MR 333164, DOI 10.1007/BF02392106
- Christopher J. Bishop, On a theorem of Beardon and Maskit, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 2, 383–388. MR 1404092
- Christopher J. Bishop and Peter W. Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997), no. 1, 1–39. MR 1484767, DOI 10.1007/BF02392718
- Christopher J. Bishop and Peter W. Jones, The law of the iterated logarithm for Kleinian groups, Lipa’s legacy (New York, 1995) Contemp. Math., vol. 211, Amer. Math. Soc., Providence, RI, 1997, pp. 17–50. MR 1476980, DOI 10.1090/conm/211/02813
- Christopher J. Bishop, The linear escape limit set, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1385–1388. MR 2053343, DOI 10.1090/S0002-9939-03-07095-3
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI 10.2307/1971388
- M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2, 266–306. MR 1771428, DOI 10.1007/s000390050009
- B. Bowditch, The ending lamination theorem, Preprint, 2011.
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Jeffrey F. Brock, Richard D. Canary, and Yair N. Minsky, The classification of Kleinian surface groups, II: The ending lamination conjecture, Ann. of Math. (2) 176 (2012), no. 1, 1–149. MR 2925381, DOI 10.4007/annals.2012.176.1.1
- Sergei Buyalo and Viktor Schroeder, Elements of asymptotic geometry, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. MR 2327160, DOI 10.4171/036
- Richard D. Canary, Ends of hyperbolic $3$-manifolds, J. Amer. Math. Soc. 6 (1993), no. 1, 1–35. MR 1166330, DOI 10.1090/S0894-0347-1993-1166330-8
- Richard D. Canary, A covering theorem for hyperbolic $3$-manifolds and its applications, Topology 35 (1996), no. 3, 751–778. MR 1396777, DOI 10.1016/0040-9383(94)00055-7
- Danny Calegari and David Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006), no. 2, 385–446. MR 2188131, DOI 10.1090/S0894-0347-05-00513-8
- Cornelia Druţu and Michael Kapovich, Geometric group theory, American Mathematical Society Colloquium Publications, vol. 63, American Mathematical Society, Providence, RI, 2018. With an appendix by Bogdan Nica. MR 3753580, DOI 10.1090/coll/063
- José L. Fernández and María V. Melián, Escaping geodesics of Riemannian surfaces, Acta Math. 187 (2001), no. 2, 213–236. MR 1879849, DOI 10.1007/BF02392617
- Zsuzsanna Gönye, Dimension of escaping geodesics, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5589–5602. MR 2415087, DOI 10.1090/S0002-9947-08-04513-3
- Michael Kapovich and Beibei Liu, Geometric finiteness in negatively pinched Hadamard manifolds, Ann. Acad. Sci. Fenn. Math. 44 (2019), no. 2, 841–875. MR 3973544, DOI 10.5186/aasfm.2019.4444
- François Labourie, Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques, Bull. Soc. Math. France 119 (1991), no. 3, 307–325 (French, with English summary). MR 1125669
- Torbjörn Lundh, Geodesics on quotient manifolds and their corresponding limit points, Michigan Math. J. 51 (2003), no. 2, 279–304. MR 1992947, DOI 10.1307/mmj/1060013197
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- María V. Melián, José M. Rodríguez, and Eva Tourís, Escaping geodesics in Riemannian surfaces with variable negative curvature, Adv. Math. 345 (2019), 928–971. MR 3903645, DOI 10.1016/j.aim.2019.01.032
- Yair Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2) 171 (2010), no. 1, 1–107. MR 2630036, DOI 10.4007/annals.2010.171.1
- Hossein Namazi and Juan Souto, Non-realizability and ending laminations: proof of the density conjecture, Acta Math. 209 (2012), no. 2, 323–395. MR 3001608, DOI 10.1007/s11511-012-0088-0
- Ken’ichi Ohshika, Constructing geometrically infinite groups on boundaries of deformation spaces, J. Math. Soc. Japan 61 (2009), no. 4, 1261–1291. MR 2588511
- Ken’ichi Ohshika, Realising end invariants by limits of minimally parabolic, geometrically finite groups, Geom. Topol. 15 (2011), no. 2, 827–890. MR 2821565, DOI 10.2140/gt.2011.15.827
- John Roe, Lectures on coarse geometry, University Lecture Series, vol. 31, American Mathematical Society, Providence, RI, 2003. MR 2007488, DOI 10.1090/ulect/031
- Teruhiko Soma, Existence of ruled wrappings in hyperbolic 3-manifolds, Geom. Topol. 10 (2006), 1173–1184. MR 2255495, DOI 10.2140/gt.2006.10.1173
- T. Soma, Geometric approach to Ending Lamination Conjecture, preprint, arXiv:0801.4236, 2008.
Additional Information
- Michael Kapovich
- Affiliation: Department of Mathematics, University of California Davis, One Shields Avenue, Davis, California 95616
- MR Author ID: 98110
- Email: kapovich@math.ucdavis.edu
- Beibei Liu
- Affiliation: Max Planck Institute of Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
- MR Author ID: 1308544
- Email: bbliumath@gmail.com
- Received by editor(s): October 13, 2019
- Received by editor(s) in revised form: February 4, 2020
- Published electronically: August 11, 2020
- Additional Notes: During the work on this paper the first author was partly supported by the NSF grant DMS-16-04241.
The second author is grateful to Max Planck Institute for Mathematics in Bonn for its hospitality and financial support. - © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 373 (2020), 7207-7224
- MSC (2010): Primary 20F65, 22E40, 53C20, 57N16
- DOI: https://doi.org/10.1090/tran/8166
- MathSciNet review: 4155205