## Renewal theory for transient Markov chains with asymptotically zero drift

HTML articles powered by AMS MathViewer

- by Denis Denisov, Dmitry Korshunov and Vitali Wachtel PDF
- Trans. Amer. Math. Soc.
**373**(2020), 7253-7286 Request permission

## Abstract:

We solve the problem of asymptotic behaviour of the renewal measure (Green function) generated by a transient Lamperti’s Markov chain $X_n$ in $\mathbb {R}$, that is, when the drift of the chain tends to zero at infinity. Under this setting, the average time spent by $X_n$ in the interval $(x,x+1]$ is roughly speaking the reciprocal of the drift and tends to infinity as $x$ grows.

For the first time we present a general approach relying on a diffusion approximation to prove renewal theorems for Markov chains. We apply a martingale-type technique and show that the asymptotic behaviour of the renewal measure heavily depends on the rate at which the drift vanishes. The two main cases are distinguished, either the drift of the chain decreases as $1/x$ or much slower than that, say as $1/x^\alpha$ for some $\alpha \in (0,1)$.

The intuition behind how the renewal measure behaves in these two cases is totally different. While in the first case $X_n^2/n$ converges weakly to a $\Gamma$-distribution and there is no law of large numbers available, in the second case a strong law of large numbers holds true for $X_n^{1+\alpha }/n$ and further normal approximation is available.

## References

- Kenneth S. Alexander,
*Excursions and local limit theorems for Bessel-like random walks*, Electron. J. Probab.**16**(2011), no. 1, 1–44. MR**2749771**, DOI 10.1214/EJP.v16-848 - K. B. Athreya, D. McDonald, and P. Ney,
*Limit theorems for semi-Markov processes and renewal theory for Markov chains*, Ann. Probab.**6**(1978), no. 5, 788–797. MR**503952** - Quentin Berger,
*Strong renewal theorems and local large deviations for multivariate random walks and renewals*, Electron. J. Probab.**24**(2019), Paper No. 46, 47. MR**3949271**, DOI 10.1214/19-EJP308 - J. Bertoin and R. A. Doney,
*On conditioning a random walk to stay nonnegative*, Ann. Probab.**22**(1994), no. 4, 2152–2167. MR**1331218** - David Blackwell,
*A renewal theorem*, Duke Math. J.**15**(1948), 145–150. MR**24093** - David Blackwell,
*Extension of a renewal theorem*, Pacific J. Math.**3**(1953), 315–320. MR**54880** - Francesco Caravenna and Ron Doney,
*Local large deviations and the strong renewal theorem*, Electron. J. Probab.**24**(2019), Paper No. 72, 48. MR**3978222**, DOI 10.1214/19-EJP319 - Gustave Choquet and Jacques Deny,
*Sur l’équation de convolution $\mu =\mu \ast \sigma$*, C. R. Acad. Sci. Paris**250**(1960), 799–801 (French). MR**119041** - D. R. Cox and Walter L. Smith,
*A direct proof of a fundamental theorem of renewal theory*, Skand. Aktuarietidskr.**36**(1953), 139–150. MR**60754**, DOI 10.1080/03461238.1953.10419467 - D. È. Denisov,
*On the existence of an integrable regularly varying majorant for an integrable monotone function*, Mat. Zametki**79**(2006), no. 1, 142–145 (Russian); English transl., Math. Notes**79**(2006), no. 1-2, 129–133. MR**2252143**, DOI 10.1007/s11006-006-0013-y - Denis Denisov, Dmitry Korshunov, and Vitali Wachtel,
*Potential analysis for positive recurrent Markov chains with asymptotically zero drift: power-type asymptotics*, Stochastic Process. Appl.**123**(2013), no. 8, 3027–3051. MR**3062435**, DOI 10.1016/j.spa.2013.04.011 - R. A. Doney,
*An analogue of the renewal theorem in higher dimensions*, Proc. London Math. Soc. (3)**16**(1966), 669–684. MR**203826**, DOI 10.1112/plms/s3-16.1.669 - P. Erdös, W. Feller, and H. Pollard,
*A property of power series with positive coefficients*, Bull. Amer. Math. Soc.**55**(1949), 201–204. MR**27867**, DOI 10.1090/S0002-9904-1949-09203-0 - K. Bruce Erickson,
*Strong renewal theorems with infinite mean*, Trans. Amer. Math. Soc.**151**(1970), 263–291. MR**268976**, DOI 10.1090/S0002-9947-1970-0268976-9 - Willy Feller,
*On the integral equation of renewal theory*, Ann. Math. Statistics**12**(1941), 243–267. MR**5419**, DOI 10.1214/aoms/1177731708 - William Feller and S. Orey,
*A renewal theorem*, J. Math. Mech.**10**(1961), 619–624. MR**0130721** - William Feller,
*An introduction to probability theory and its applications. Vol. II.*, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR**0270403** - Adriano Garsia and John Lamperti,
*A discrete renewal theorem with infinite mean*, Comment. Math. Helv.**37**(1962/63), 221–234. MR**148121**, DOI 10.1007/BF02566974 - Denis Guibourg and Loïc Hervé,
*Multidimensional renewal theory in the non-centered case. Application to strongly ergodic Markov chains*, Potential Anal.**38**(2013), no. 2, 471–497. MR**3015360**, DOI 10.1007/s11118-012-9282-0 - Yves Guivarc’h, Michael Keane, and Bernard Roynette,
*Marches aléatoires sur les groupes de Lie*, Lecture Notes in Mathematics, Vol. 624, Springer-Verlag, Berlin-New York, 1977 (French). MR**0517359** - Harry Kesten,
*Renewal theory for functionals of a Markov chain with general state space*, Ann. Probability**2**(1974), 355–386. MR**365740**, DOI 10.1214/aop/1176996654 - Claudia Klüppelberg and Serguei Pergamenchtchikov,
*Renewal theory for functionals of a Markov chain with compact state space*, Ann. Probab.**31**(2003), no. 4, 2270–2300. MR**2016619**, DOI 10.1214/aop/1068646385 - Dmitry Korshunov,
*The key renewal theorem for a transient Markov chain*, J. Theoret. Probab.**21**(2008), no. 1, 234–245. MR**2384480**, DOI 10.1007/s10959-007-0132-8 - John Lamperti,
*Criteria for the recurrence or transience of stochastic process. I*, J. Math. Anal. Appl.**1**(1960), 314–330. MR**126872**, DOI 10.1016/0022-247X(60)90005-6 - John Lamperti,
*A new class of probability limit theorems*, J. Math. Mech.**11**(1962), 749–772. MR**0148120** - John Lamperti,
*Criteria for stochastic processes. II. Passage-time moments*, J. Math. Anal. Appl.**7**(1963), 127–145. MR**159361**, DOI 10.1016/0022-247X(63)90083-0 - Makoto Maejima,
*On local limit theorems and Blackwell’s renewal theorem for independent random variables*, Ann. Inst. Statist. Math.**27**(1975), no. 3, 507–520. MR**405617**, DOI 10.1007/BF02504668 - Bernhard Mellein,
*Green function behaviour of critical Galton-Watson processes with immigration*, Bol. Soc. Brasil. Mat.**14**(1983), no. 1, 17–25. MR**736566**, DOI 10.1007/BF02584742 - M. V. Men′shikov, I. M. Èĭsymont, and R. Yasnogorodskiĭ,
*Markov processes with asymptotically zero drift*, Problemy Peredachi Informatsii**31**(1995), no. 3, 60–75 (Russian, with Russian summary); English transl., Problems Inform. Transmission**31**(1995), no. 3, 248–261 (1996). MR**1367920** - S. P. Meyn and R. L. Tweedie,
*Markov Chains and Stochastic Stability*. Springer–Verlag, London, (1993). - Mikhail Menshikov, Serguei Popov, and Andrew Wade,
*Non-homogeneous random walks*, Cambridge Tracts in Mathematics, vol. 209, Cambridge University Press, Cambridge, 2017. Lyapunov function methods for near-critical stochastic systems. MR**3587911**, DOI 10.1017/9781139208468 - A. V. Nagaev,
*Renewal theorems in $\textbf {R}^{d}$*, Teor. Veroyatnost. i Primenen.**24**(1979), no. 3, 565–573 (Russian, with English summary). MR**541368** - A. G. Pakes,
*Further results on the critical Galton-Watson process with immigration*, J. Austral. Math. Soc.**13**(1972), 277–290. MR**0312585** - Sidney C. Port and Charles J. Stone,
*Hitting time and hitting places for non-lattice recurrent random walks*, J. Math. Mech.**17**(1967), 35–57. MR**0215375**, DOI 10.1512/iumj.1968.17.17003 - Daniel Revuz and Marc Yor,
*Continuous martingales and Brownian motion*, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR**1725357**, DOI 10.1007/978-3-662-06400-9 - B. A. Rogozin,
*Asymptotic analysis of the renewal function*, Teor. Verojatnost. i Primenen.**21**(1976), no. 4, 689–706 (Russian, with English summary). MR**0420900** - Walter A. Rosenkrantz,
*A local limit theorem for a certain class of random walks*, Ann. Math. Statist.**37**(1966), 855–859. MR**200988**, DOI 10.1214/aoms/1177699366 - Walter L. Smith,
*On some general renewal theorems for nonidentically distributed variables*, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 467–514. MR**0133890** - Frank Spitzer,
*Principles of random walk*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1964. MR**0171290** - V. M. Shurenkov,
*On Markov renewal theory*, Teor. Veroyatnost. i Primenen.**29**(1984), no. 2, 248–263 (Russian). MR**749913** - John A. Williamson,
*Some renewal theorems for non-negative independent random variables*, Trans. Amer. Math. Soc.**114**(1965), 417–445. MR**178514**, DOI 10.1090/S0002-9947-1965-0178514-5

## Additional Information

**Denis Denisov**- Affiliation: Department of Mathematics, University of Manchester, United Kingdom
- MR Author ID: 678962
- ORCID: 0000-0003-0025-7140
- Email: denis.denisov@manchester.ac.uk
**Dmitry Korshunov**- Affiliation: Department of Mathematics and Statistics, Lancaster University, United Kingdom
- MR Author ID: 323844
- ORCID: 0000-0003-2516-8216
- Email: d.korshunov@lancaster.ac.uk
**Vitali Wachtel**- Affiliation: Institute of Mathematics, University of Augsburg, Germany
- MR Author ID: 668465
- Email: vitali.wachtel@math.uni-augsburg.de
- Received by editor(s): July 18, 2019
- Received by editor(s) in revised form: February 21, 2020
- Published electronically: August 6, 2020
- © Copyright 2020 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**373**(2020), 7253-7286 - MSC (2010): Primary 60K05; Secondary 60J05, 60G42
- DOI: https://doi.org/10.1090/tran/8167
- MathSciNet review: 4155207