Log BPS numbers of log Calabi-Yau surfaces
Authors:
Jinwon Choi, Michel van Garrel, Sheldon Katz and Nobuyoshi Takahashi
Journal:
Trans. Amer. Math. Soc. 374 (2021), 687-732
MSC (2020):
Primary 14N35; Secondary 14J33
DOI:
https://doi.org/10.1090/tran/8234
Published electronically:
November 3, 2020
MathSciNet review:
4188197
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let $(S,E)$ be a log Calabi-Yau surface pair with $E$ a smooth divisor. We define new conjecturally integer-valued counts of $\mathbb {A}^1$-curves in $(S,E)$. These log BPS numbers are derived from genus 0 log Gromov-Witten invariants of maximal tangency along $E$ via a formula analogous to the multiple cover formula for disk counts. A conjectural relationship to genus 0 local BPS numbers is described and verified for del Pezzo surfaces and curve classes of arithmetic genus up to 2. We state a number of conjectures and provide computational evidence.
- Dan Abramovich and Qile Chen, Stable logarithmic maps to Deligne-Faltings pairs II, Asian J. Math. 18 (2014), no. 3, 465–488. MR 3257836, DOI https://doi.org/10.4310/AJM.2014.v18.n3.a5
- Dan Abramovich, Steffen Marcus, and Jonathan Wise, Comparison theorems for Gromov-Witten invariants of smooth pairs and of degenerations, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 4, 1611–1667 (English, with English and French summaries). MR 3329675
- M. Alim, M. Hecht, H. Jockers, P. Mayr, A. Mertens, and M. Soroush, Hints for off-shell mirror symmetry in type II/F-theory compactifications, Nuclear Phys. B 841 (2010), no. 3, 303–338. MR 2720856, DOI https://doi.org/10.1016/j.nuclphysb.2010.06.017
- Denis Auroux, Mirror symmetry and $T$-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT 1 (2007), 51–91. MR 2386535
- L. Barrott and N. Nabijou, Tangent curves to degenerating hypersurfaces, in preparation, 2020.
- Arnaud Beauville, Counting rational curves on $K3$ surfaces, Duke Math. J. 97 (1999), no. 1, 99–108. MR 1682284, DOI https://doi.org/10.1215/S0012-7094-99-09704-1
- K. Behrend, Algebraic Gromov-Witten invariants, New trends in algebraic geometry (Warwick, 1996) London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 19–70. MR 1714820, DOI https://doi.org/10.1017/CBO9780511721540.004
- P. Bousseau, A proof of N. Takahashi’s conjecture on genus zero Gromov-Witten theory of $(\mathbb {P}^2,{E})$, arXiv:1909.02992.
- Pierrick Bousseau, Quantum mirrors of log Calabi-Yau surfaces and higher-genus curve counting, Compos. Math. 156 (2020), no. 2, 360–411. MR 4048291, DOI https://doi.org/10.1112/s0010437x19007760
- P. Bousseau, The quantum tropical vertex, arXiv:1806.11495.
- P. Bousseau, Scattering diagrams, stability conditions, and coherent sheaves on $\mathbb {P}^2$, arXiv:1909.02985.
- Pierrick Bousseau, Tropical refined curve counting from higher genera and lambda classes, Invent. Math. 215 (2019), no. 1, 1–79. MR 3904449, DOI https://doi.org/10.1007/s00222-018-0823-z
- P. Bousseau, A. Brini and M. van Garrel, On the log-local principle for the toric boundary, arXiv:1908.04371.
- P. Bousseau, A. Brini and M. van Garrel, Stable maps to Looijenga pairs, in preparation, 2020.
- Jim Bryan and Rahul Pandharipande, BPS states of curves in Calabi-Yau 3-folds, Geom. Topol. 5 (2001), 287–318. MR 1825668, DOI https://doi.org/10.2140/gt.2001.5.287
- M. Carl, M. Pumperla and B. Siebert, A tropical view on Landau-Ginzburg models, preprint available at https://www.math.uni-hamburg.de/home/siebert/research/research.html.
- Qile Chen, Stable logarithmic maps to Deligne-Faltings pairs I, Ann. of Math. (2) 180 (2014), no. 2, 455–521. MR 3224717, DOI https://doi.org/10.4007/annals.2014.180.2.2
- Xi Chen, A simple proof that rational curves on $K3$ are nodal, Math. Ann. 324 (2002), no. 1, 71–104. MR 1931759, DOI https://doi.org/10.1007/s00208-002-0329-1
- J. Choi, M. van Garrel, S. Katz and N. Takahashi, Local BPS numbers: Enumerative aspects and wall-crossing, Int. Math. Res. Notices, published online on 02 August 2018, rny171, https://doi.org/10.1093/imrn/rny171.
- J. Choi, M. van Garrel, S. Katz and N. Takahashi, Sheaves of maximal intersection and multiplicities of stable log maps arXiv:1908.10906.
- T. Collins, A. Jacob, Y.-S. Lin, Special Lagrangian submanifolds of log Calabi-Yau manifolds, arXiv:1904.08363
- Ulrich Derenthal, Michael Joyce, and Zachariah Teitler, The nef cone volume of generalized del Pezzo surfaces, Algebra Number Theory 2 (2008), no. 2, 157–182. MR 2377367, DOI https://doi.org/10.2140/ant.2008.2.157
- L. Diogo and S. Lisi, Symplectic Homology for complements of smooth divisors, arXiv:1804.08014.
- Sandra Di Rocco, $k$-very ample line bundles on del Pezzo surfaces, Math. Nachr. 179 (1996), 47–56. MR 1389449, DOI https://doi.org/10.1002/mana.19961790104
- Honglu Fan, Hsian-Hua Tseng, and Fenglong You, Mirror theorems for root stacks and relative pairs, Selecta Math. (N.S.) 25 (2019), no. 4, Paper No. 54, 25. MR 3997137, DOI https://doi.org/10.1007/s00029-019-0501-z
- B. Fantechi, L. Göttsche, and D. van Straten, Euler number of the compactified Jacobian and multiplicity of rational curves, J. Algebraic Geom. 8 (1999), no. 1, 115–133. MR 1658220
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010), no. 1, 23–174. MR 2573826, DOI https://doi.org/10.1215/00127094-2009-062
- Michel van Garrel, Local and relative BPS state counts for del Pezzo surfaces, String-Math 2014, Proc. Sympos. Pure Math., vol. 93, Amer. Math. Soc., Providence, RI, 2016, pp. 215–220. MR 3525992
- M. van Garrel, On a conjecture by N. Takahashi on log mirror symmetry for the projective plane, AMS Adv. Stud. Pure Math. no. 83, 2019, Primitive forms and related subjects - Kavli IPMU 2014, pp. 117–126.
- Michel van Garrel, Tom Graber, and Helge Ruddat, Local Gromov-Witten invariants are log invariants, Adv. Math. 350 (2019), 860–876. MR 3948687, DOI https://doi.org/10.1016/j.aim.2019.04.063
- Michel van Garrel, D. Peter Overholser, and Helge Ruddat, Enumerative aspects of the Gross-Siebert program, Calabi-Yau varieties: arithmetic, geometry and physics, Fields Inst. Monogr., vol. 34, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 337–420. MR 3409781, DOI https://doi.org/10.1007/978-1-4939-2830-9_11
- Michel van Garrel, Tony W. H. Wong, and Gjergji Zaimi, Integrality of relative BPS state counts of toric del Pezzo surfaces, Commun. Number Theory Phys. 7 (2013), no. 4, 671–687. MR 3228298, DOI https://doi.org/10.4310/CNTP.2013.v7.n4.a3
- Andreas Gathmann, Absolute and relative Gromov-Witten invariants of very ample hypersurfaces, Duke Math. J. 115 (2002), no. 2, 171–203. MR 1944571, DOI https://doi.org/10.1215/S0012-7094-02-11521-X
- Andreas Gathmann, Relative Gromov-Witten invariants and the mirror formula, Math. Ann. 325 (2003), no. 2, 393–412. MR 1962055, DOI https://doi.org/10.1007/s00208-002-0345-1
- R. Gopakumar and C. Vafa, M-theory and topological strings-I, arXiv:hep-th/9809187, 1998.
- R. Gopakumar and C. Vafa, M-theory and topological strings-II, arXiv:hep-th/9812127, 1998.
- Lothar Göttsche, A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys. 196 (1998), no. 3, 523–533. MR 1645204, DOI https://doi.org/10.1007/s002200050434
- Gräfnitz, Tim, Tropical correspondence for the log Calabi-Yau pair $(\mathbb {P}^2,{E})$, arXiv:2005.14018, 2020.
- Mark Gross, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, vol. 114, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2011. MR 2722115
- Mark Gross, Paul Hacking, and Sean Keel, Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 65–168. MR 3415066, DOI https://doi.org/10.1007/s10240-015-0073-1
- M. Gross, P. Hacking and B. Siebert, Theta functions on varieties with effective anti-canonical class, arXiv:1601.07081.
- M. Gross, P. Hacking, S. Keel, B. Siebert: Theta functions and K3 surfaces, in preparation.
- Mark Gross, Rahul Pandharipande, and Bernd Siebert, The tropical vertex, Duke Math. J. 153 (2010), no. 2, 297–362. MR 2667135, DOI https://doi.org/10.1215/00127094-2010-025
- Mark Gross and Bernd Siebert, Mirror symmetry via logarithmic degeneration data. I, J. Differential Geom. 72 (2006), no. 2, 169–338. MR 2213573
- Mark Gross and Bernd Siebert, From real affine geometry to complex geometry, Ann. of Math. (2) 174 (2011), no. 3, 1301–1428. MR 2846484, DOI https://doi.org/10.4007/annals.2011.174.3.1
- Mark Gross and Bernd Siebert, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), no. 2, 451–510. MR 3011419, DOI https://doi.org/10.1090/S0894-0347-2012-00757-7
- Mark Gross and Bernd Siebert, Intrinsic mirror symmetry and punctured Gromov-Witten invariants, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 199–230. MR 3821173
- Joe Harris, Galois groups of enumerative problems, Duke Math. J. 46 (1979), no. 4, 685–724. MR 552521
- M. Huang, A. Klemm, and M. Poretschkin, Refined stable pair invariants for E-, M- and $[p,q]$-strings, arXiv:1308.0619.
- Dominic Joyce and Yinan Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199. MR 2951762, DOI https://doi.org/10.1090/S0065-9266-2011-00630-1
- Sheldon Katz, Genus zero Gopakumar-Vafa invariants of contractible curves, J. Differential Geom. 79 (2008), no. 2, 185–195. MR 2420017
- Sheldon Katz, Albrecht Klemm, and Cumrun Vafa, M-theory, topological strings and spinning black holes, Adv. Theor. Math. Phys. 3 (1999), no. 5, 1445–1537. MR 1796683, DOI https://doi.org/10.4310/ATMP.1999.v3.n5.a6
- B. Kim, H. Lho, and H. Ruddat, The degeneration formula for stable log maps, arXiv:1803.04210.
- A. Klemm, D. Maulik, R. Pandharipande, and E. Scheidegger, Noether-Lefschetz theory and the Yau-Zaslow conjecture, J. Amer. Math. Soc. 23 (2010), no. 4, 1013–1040. MR 2669707, DOI https://doi.org/10.1090/S0894-0347-2010-00672-8
- Andreas Leopold Knutsen, Exceptional curves on del Pezzo surfaces, Math. Nachr. 256 (2003), 58–81. MR 1989378, DOI https://doi.org/10.1002/mana.200310070
- Maxim Kontsevich and Yan Soibelman, Motivic Donaldson-Thomas invariants: summary of results, Mirror symmetry and tropical geometry, Contemp. Math., vol. 527, Amer. Math. Soc., Providence, RI, 2010, pp. 55–89. MR 2681792, DOI https://doi.org/10.1090/conm/527/10400
- Martijn Kool, Vivek Shende, and Richard P. Thomas, A short proof of the Göttsche conjecture, Geom. Topol. 15 (2011), no. 1, 397–406. MR 2776848, DOI https://doi.org/10.2140/gt.2011.15.397
- Martijn Kool and Richard Thomas, Reduced classes and curve counting on surfaces I: theory, Algebr. Geom. 1 (2014), no. 3, 334–383. MR 3238154, DOI https://doi.org/10.14231/AG-2014-017
- W. Lerche and P. Mayr, On N=1 Mirror Symmetry for Open Type II Strings, arXiv:hep-th/0111113.
- W. Lerche, P. Mayr, and N. Warner, Holomorphic N=1 Special Geometry of Open–Closed Type II Strings, arXiv:hep-th/0207259.
- Jun Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001), no. 3, 509–578. MR 1882667
- J. Li, A degeneration formula of Gromov-Witten invariants, J. Diff. Geom, vol. 60, (2002), pp. 199–293.
- Yu-Shen Lin, Open Gromov-Witten invariants on elliptic K3 surfaces and wall-crossing, Comm. Math. Phys. 349 (2017), no. 1, 109–164. MR 3592747, DOI https://doi.org/10.1007/s00220-016-2754-0
- Y.-S. Lin, Correspondence Theorem between Holomorphic Discs and Tropical Discs on K3 Surfaces, to appear in J. Diff. Geom.
- Jun Li and Yu-jong Tzeng, Universal polynomials for singular curves on surfaces, Compos. Math. 150 (2014), no. 7, 1169–1182. MR 3230849, DOI https://doi.org/10.1112/S0010437X13007756
- Travis Mandel and Helge Ruddat, Descendant log Gromov-Witten invariants for toric varieties and tropical curves, Trans. Amer. Math. Soc. 373 (2020), no. 2, 1109–1152. MR 4068259, DOI https://doi.org/10.1090/tran/7936
- Yu. I. Manin, Generating functions in algebraic geometry and sums over trees, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 401–417. MR 1363064, DOI https://doi.org/10.1007/978-1-4612-4264-2_14
- Davesh Maulik and Rahul Pandharipande, Gromov-Witten theory and Noether-Lefschetz theory, A celebration of algebraic geometry, Clay Math. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 2013, pp. 469–507. MR 3114953
- D. Maulik, R. Pandharipande, and R. P. Thomas, Curves on $K3$ surfaces and modular forms, J. Topol. 3 (2010), no. 4, 937–996. With an appendix by A. Pixton. MR 2746343, DOI https://doi.org/10.1112/jtopol/jtq030
- David Mumford, Algebraic geometry. I, Springer-Verlag, Berlin-New York, 1976. Complex projective varieties; Grundlehren der Mathematischen Wissenschaften, No. 221. MR 0453732
- N. Nabijou and D. Ranganathan, Gromov-Witten theory with maximal contacts, arXiv:1908.04706.
- R. Pandharipande, Hodge integrals and degenerate contributions, Comm. Math. Phys. 208 (1999), no. 2, 489–506. MR 1729095, DOI https://doi.org/10.1007/s002200050766
- R. Pandharipande, Three questions in Gromov-Witten theory, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 503–512. MR 1957060
- R. Pandharipande and R. P. Thomas, The Katz-Klemm-Vafa conjecture for $K3$ surfaces, Forum Math. Pi 4 (2016), e4, 111. MR 3508473, DOI https://doi.org/10.1017/fmp.2016.2
- Markus Reineke, Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants, Compos. Math. 147 (2011), no. 3, 943–964. MR 2801406, DOI https://doi.org/10.1112/S0010437X1000521X
- Markus Reineke, Degenerate cohomological Hall algebra and quantized Donaldson-Thomas invariants for $m$-loop quivers, Doc. Math. 17 (2012), 1–22. MR 2889742
- Vivek Shende, Hilbert schemes of points on a locally planar curve and the Severi strata of its versal deformation, Compos. Math. 148 (2012), no. 2, 531–547. MR 2904196, DOI https://doi.org/10.1112/S0010437X11007378
- Jan Stienstra, Mahler measure variations, Eisenstein series and instanton expansions, Mirror symmetry. V, AMS/IP Stud. Adv. Math., vol. 38, Amer. Math. Soc., Providence, RI, 2006, pp. 139–150. MR 2282958
- Andrew Strominger, Shing-Tung Yau, and Eric Zaslow, Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), no. 1-2, 243–259. MR 1429831, DOI https://doi.org/10.1016/0550-3213%2896%2900434-8
- N. Takahashi, Curves in the complement of a smooth plane cubic whose normalizations are $\mathbb {A}^1$, arXiv:alg-geom/9605007.
- N. Takahashi, On the multiplicity of reducible relative stable morphisms, arXiv:1711.08173.
- Nobuyoshi Takahashi, Log mirror symmetry and local mirror symmetry, Comm. Math. Phys. 220 (2001), no. 2, 293–299. MR 1844627, DOI https://doi.org/10.1007/PL00005567
- Damiano Testa, Anthony Várilly-Alvarado, and Mauricio Velasco, Cox rings of degree one del Pezzo surfaces, Algebra Number Theory 3 (2009), no. 7, 729–761. MR 2579393, DOI https://doi.org/10.2140/ant.2009.3.729
- H.-H. Tseng and F. You, A mirror theorem for multi-root stacks and applications, arXiv:2006.08991.
- Yu-Jong Tzeng, A proof of the Göttsche-Yau-Zaslow formula, J. Differential Geom. 90 (2012), no. 3, 439–472. MR 2916043
- Y. Tzeng, Enumeration of singular varieties with tangency conditions, arXiv:1703.02513.
- Claire Voisin, A mathematical proof of a formula of Aspinwall and Morrison, Compositio Math. 104 (1996), no. 2, 135–151. MR 1421397
- Jonathan Wise, Uniqueness of minimal morphisms of logarithmic schemes, Algebr. Geom. 6 (2019), no. 1, 50–63. MR 3904798, DOI https://doi.org/10.14231/AG-2019-003
- Shing-Tung Yau and Eric Zaslow, BPS states, string duality, and nodal curves on $K3$, Nuclear Phys. B 471 (1996), no. 3, 503–512. MR 1398633, DOI https://doi.org/10.1016/0550-3213%2896%2900176-9
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 14N35, 14J33
Retrieve articles in all journals with MSC (2020): 14N35, 14J33
Additional Information
Jinwon Choi
Affiliation:
Department of Mathematics & Research Institute of Natural Sciences, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Youngsan-gu, Seoul 04310, Republic of Korea
MR Author ID:
984664
ORCID:
0000-0001-8686-9919
Email:
jwchoi@sookmyung.ac.kr
Michel van Garrel
Affiliation:
Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, United Kingdom
MR Author ID:
1069429
Email:
michel.van-garrel@warwick.ac.uk
Sheldon Katz
Affiliation:
Department of Mathematics, MC-382, University of Illinois at Urbana-Champaign, Urbana, Illinois
MR Author ID:
198078
Email:
katz@math.uiuc.edu
Nobuyoshi Takahashi
Affiliation:
Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
MR Author ID:
633805
Email:
tkhsnbys@hiroshima-u.ac.jp
Received by editor(s):
February 28, 2019
Received by editor(s) in revised form:
May 6, 2020, and June 23, 2020
Published electronically:
November 3, 2020
Additional Notes:
The first author was supported by the Korea NRF grant NRF-2018R1C1B6005600
The second author was supported by the German Research Foundation DFG-RTG-1670 and the European Commission Research Executive Agency MSCA-IF-746554
The third author was supported in part by NSF grant DMS-1502170 and NSF grant DMS-1802242, as well as by NSF grant DMS-1440140 while in residence at MSRI in Spring, 2018
The fourth author was supported by JSPS KAKENHI Grant Number JP17K05204. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 746554
Article copyright:
© Copyright 2020
American Mathematical Society