On the rigidity of uniform Roe algebras over uniformly locally finite coarse spaces
Authors:
B. M. Braga and I. Farah
Journal:
Trans. Amer. Math. Soc. 374 (2021), 1007-1040
MSC (2010):
Primary 46L80, 46L85, 51K05
DOI:
https://doi.org/10.1090/tran/8180
Published electronically:
November 3, 2020
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Given a coarse space , one can define a
-algebra
called the uniform Roe algebra of
. It has been proved by J. Špakula and R. Willett that if the uniform Roe algebras of two uniformly locally finite metric spaces with property A are isomorphic, then the metric spaces are coarsely equivalent to each other. In this paper, we look at the problem of generalizing this result for general coarse spaces and on weakening the hypothesis of the spaces having property A.
- [AGŠ12] Goulnara Arzhantseva, Erik Guentner, and Ján Špakula, Coarse non-amenability and coarse embeddings, Geom. Funct. Anal. 22 (2012), no. 1, 22–36. MR 2899681, https://doi.org/10.1007/s00039-012-0145-z
- [BCL19] B. M. Braga, Y.-C. Chung, and K. Li, Coarse Baum-Connes conjecture and rigidity for Roe algebras. J. Funct. Anal. 279 (2020), no. 9, 108728, 21 pp. DOI: 10.1016/j.jfa.2020.108728.
- [BF]
B. Braga and I. Farah,
On the rigidity of uniform Roe algebras over uniformly locally finite coarse spaces,
ArXiv e-prints. - [BFV]
B. M. Braga, I. Farah, and A. Vignati,
Uniform Roe coronas,
1810.07789. - [BFV19] Bruno M. Braga, Ilijas Farah, and Alessandro Vignati, Embeddings of uniform Roe algebras, Comm. Math. Phys. 377 (2020), no. 3, 1853–1882. MR 4121613, https://doi.org/10.1007/s00220-019-03539-9
- [BNW07] J. Brodzki, G. A. Niblo, and N. J. Wright, Property A, partial translation structures, and uniform embeddings in groups, J. Lond. Math. Soc. (2) 76 (2007), no. 2, 479–497. MR 2363428, https://doi.org/10.1112/jlms/jdm066
- [BV19]
B. M. Braga, A. Vignati, On the uniform Roe algebra as a Banach algebra and embeddings of
uniform Roe algebras, Bulletin of the London Mathematical Society (2020) 1-18. DOI:10.1112/blms.12366.
- [CL18] Yeong Chyuan Chung and Kang Li, Rigidity of ℓ^{𝑝} Roe-type algebras, Bull. Lond. Math. Soc. 50 (2018), no. 6, 1056–1070. MR 3891943, https://doi.org/10.1112/blms.12201
- [CW04] Xiaoman Chen and Qin Wang, Ideal structure of uniform Roe algebras of coarse spaces, J. Funct. Anal. 216 (2004), no. 1, 191–211. MR 2091361, https://doi.org/10.1016/j.jfa.2003.11.015
- [CW05] Xiaoman Chen and Qin Wang, Ghost ideals in uniform Roe algebras of coarse spaces, Arch. Math. (Basel) 84 (2005), no. 6, 519–526. MR 2148492, https://doi.org/10.1007/s00013-005-1189-1
- [EM19] Eske Ellen Ewert and Ralf Meyer, Coarse geometry and topological phases, Comm. Math. Phys. 366 (2019), no. 3, 1069–1098. MR 3927086, https://doi.org/10.1007/s00220-019-03303-z
- [FS14] Martin Finn-Sell, Fibred coarse embeddings, a-T-menability and the coarse analogue of the Novikov conjecture, J. Funct. Anal. 267 (2014), no. 10, 3758–3782. MR 3266245, https://doi.org/10.1016/j.jfa.2014.09.012
- [Hal67] Marshall Hall Jr., Combinatorial theory, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967. MR 0224481
- [HLS02] N. Higson, V. Lafforgue, and G. Skandalis, Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal. 12 (2002), no. 2, 330–354. MR 1911663, https://doi.org/10.1007/s00039-002-8249-5
- [Kub17] Yosuke Kubota, Controlled topological phases and bulk-edge correspondence, Comm. Math. Phys. 349 (2017), no. 2, 493–525. MR 3594362, https://doi.org/10.1007/s00220-016-2699-3
- [Kun11] Kenneth Kunen, Set theory, Studies in Logic (London), vol. 34, College Publications, London, 2011. MR 2905394
- [LL18] Kang Li and Hung-Chang Liao, Classification of uniform Roe algebras of locally finite groups, J. Operator Theory 80 (2018), no. 1, 25–46. MR 3835447, https://doi.org/10.7900/jot.2017may23.2163
- [LW18] Kang Li and Rufus Willett, Low-dimensional properties of uniform Roe algebras, J. Lond. Math. Soc. (2) 97 (2018), no. 1, 98–124. MR 3764069, https://doi.org/10.1112/jlms.12100
- [PV85] Hans Jürgen Prömel and Bernd Voigt, Canonical forms of Borel-measurable mappings Δ:[𝜔]^{𝜔}→𝑅, J. Combin. Theory Ser. A 40 (1985), no. 2, 409–417. MR 814423, https://doi.org/10.1016/0097-3165(85)90099-8
- [Roe88] John Roe, An index theorem on open manifolds. I, II, J. Differential Geom. 27 (1988), no. 1, 87–113, 115–136. MR 918459
- [Roe93] John Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc. 104 (1993), no. 497, x+90. MR 1147350, https://doi.org/10.1090/memo/0497
- [Roe03] John Roe, Lectures on coarse geometry, University Lecture Series, vol. 31, American Mathematical Society, Providence, RI, 2003. MR 2007488
- [Ros]
C. Rosendal,
Coarse Geometry of Topological Groups,
Book manuscript, version of 2018, http://homepages.math.uic.edu/~rosendal/PapersWebsite/Coarse-Geometry-Book23.pdf. - [RW14] John Roe and Rufus Willett, Ghostbusting and property A, J. Funct. Anal. 266 (2014), no. 3, 1674–1684. MR 3146831, https://doi.org/10.1016/j.jfa.2013.07.004
- [Sak12]
H. Sako,
Finite-dimensional approximation properties for uniform Roe algebras,
arXiv e-prints, page 1212.5900, December 2012. - [Sak13]
H. Sako,
Property A for coarse spaces,
ArXiv e-prints, March 2013. - [She92] Saharon Shelah, Cardinal arithmetic for skeptics, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 197–210. MR 1112424, https://doi.org/10.1090/S0273-0979-1992-00261-6
- [STY02] G. Skandalis, J. L. Tu, and G. Yu, The coarse Baum-Connes conjecture and groupoids, Topology 41 (2002), no. 4, 807–834. MR 1905840, https://doi.org/10.1016/S0040-9383(01)00004-0
- [ŠW13] Ján Špakula and Rufus Willett, On rigidity of Roe algebras, Adv. Math. 249 (2013), 289–310. MR 3116573, https://doi.org/10.1016/j.aim.2013.09.006
- [WW19]
S. White and R. Willett,
Cartan subalgebras of uniform Roe algebras,
Groups, Geometry, and Dynamics, to appear 2019. - [WZ10] Wilhelm Winter and Joachim Zacharias, The nuclear dimension of 𝐶*-algebras, Adv. Math. 224 (2010), no. 2, 461–498. MR 2609012, https://doi.org/10.1016/j.aim.2009.12.005
- [Yu00] Guoliang Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), no. 1, 201–240. MR 1728880, https://doi.org/10.1007/s002229900032
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L80, 46L85, 51K05
Retrieve articles in all journals with MSC (2010): 46L80, 46L85, 51K05
Additional Information
B. M. Braga
Affiliation:
Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario, M3J IP3, Canada
Email:
demendoncabraga@gmail.com
I. Farah
Affiliation:
Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario, M3J IP3, Canada
Email:
ifarah@mathstat.yorku.ca
DOI:
https://doi.org/10.1090/tran/8180
Keywords:
Bounded geometry,
coarse structure,
uniform Roe algebra,
uniformly discrete,
locally finite
Received by editor(s):
October 17, 2019
Received by editor(s) in revised form:
April 15, 2020
Published electronically:
November 3, 2020
Additional Notes:
The first author was supported by York Science Research Fellowship.
Both authors were partially supported by IF’s NSERC grant.
Article copyright:
© Copyright 2020
American Mathematical Society