Berezin regularity of domains in $\mathbb {C}^n$ and the essential norms of Toeplitz operators
HTML articles powered by AMS MathViewer
- by Željko Čučković and Sönmez Şahutoğlu PDF
- Trans. Amer. Math. Soc. 374 (2021), 2521-2540 Request permission
Abstract:
For the open unit disc $\mathbb {D}$ in the complex plane, it is well known that if $\phi \in C(\overline {\mathbb {D}})$ then its Berezin transform $\widetilde {\phi }$ also belongs to $C(\overline {\mathbb {D}})$. We say that $\mathbb {D}$ is BC-regular. In this paper we study BC-regularity of some pseudoconvex domains in $\mathbb {C}^n$ and show that the boundary geometry plays an important role. We also establish a relationship between the essential norm of an operator in a natural Toeplitz subalgebra and its Berezin transform.References
- J. Arazy and M. Engliš, Iterates and the boundary behavior of the Berezin transform, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 4, 1101–1133 (English, with English and French summaries). MR 1849217
- Sheldon Axler, John B. Conway, and Gerard McDonald, Toeplitz operators on Bergman spaces, Canadian J. Math. 34 (1982), no. 2, 466–483. MR 658979, DOI 10.4153/CJM-1982-031-1
- Sheldon Axler and Dechao Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47 (1998), no. 2, 387–400. MR 1647896, DOI 10.1512/iumj.1998.47.1407
- D. Békollé, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), no. 2, 310–350. MR 1073289, DOI 10.1016/0022-1236(90)90131-4
- Steve Bell, Differentiability of the Bergman kernel and pseudolocal estimates, Math. Z. 192 (1986), no. 3, 467–472. MR 845219, DOI 10.1007/BF01164021
- Harold P. Boas, Extension of Kerzman’s theorem on differentiability of the Bergman kernel function, Indiana Univ. Math. J. 36 (1987), no. 3, 495–499. MR 905607, DOI 10.1512/iumj.1987.36.36027
- Harold P. Boas, Small sets of infinite type are benign for the $\overline \partial$-Neumann problem, Proc. Amer. Math. Soc. 103 (1988), no. 2, 569–578. MR 943086, DOI 10.1090/S0002-9939-1988-0943086-2
- Harold P. Boas and Emil J. Straube, Sobolev estimates for the $\overline \partial$-Neumann operator on domains in $\textbf {C}^n$ admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), no. 1, 81–88. MR 1086815, DOI 10.1007/BF02571327
- David W. Catlin, Global regularity of the $\bar \partial$-Neumann problem, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 39–49. MR 740870, DOI 10.1090/pspum/041/740870
- Timothy G. Clos, Mehmet Çelik, and Sönmez Şahutoğlu, Compactness of Hankel operators with symbols continuous on the closure of pseudoconvex domains, Integral Equations Operator Theory 90 (2018), no. 6, Paper No. 71, 14. MR 3877477, DOI 10.1007/s00020-018-2497-8
- L. A. Coburn, A Lipschitz estimate for Berezin’s operator calculus, Proc. Amer. Math. Soc. 133 (2005), no. 1, 127–131. MR 2085161, DOI 10.1090/S0002-9939-04-07476-3
- John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713
- So-Chin Chen and Mei-Chi Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001. MR 1800297, DOI 10.1090/amsip/019
- Mehmet Çelik and Sönmez Şahutoğlu, On compactness of the $\overline \partial$-Neumann problem and Hankel operators, Proc. Amer. Math. Soc. 140 (2012), no. 1, 153–159. MR 2833527, DOI 10.1090/S0002-9939-2011-11350-9
- Željko Čučković and Sönmez Şahutoğlu, Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains, J. Funct. Anal. 256 (2009), no. 11, 3730–3742. MR 2514058, DOI 10.1016/j.jfa.2009.02.018
- eljko C̆u ković and Sönmez Şahutoğlu, Axler-Zheng type theorem on a class of domains in $\Bbb {C}^n$, Integral Equations Operator Theory 77 (2013), no. 3, 397–405. MR 3116666, DOI 10.1007/s00020-013-2088-7
- eljko C̆u ković and Sönmez Şahutoğlu, Erratum to: Axler-Zheng type theorem on a class of domains in $\Bbb {C}^n$ [MR3116666], Integral Equations Operator Theory 79 (2014), no. 3, 449–450. MR 3216813, DOI 10.1007/s00020-014-2138-9
- Željko Čučković and Sönmez Şahutoğlu, Essential norm estimates for Hankel operators on convex domains in $\Bbb C^2$, Math. Scand. 120 (2017), no. 2, 305–316. MR 3657418, DOI 10.7146/math.scand.a-25793
- Željko Čučković and Sönmez Şahutoğlu, Essential norm estimates for the $\overline \partial$-Neumann operator on convex domains and worm domains, Indiana Univ. Math. J. 67 (2018), no. 1, 267–292. MR 3776022, DOI 10.1512/iumj.2018.67.6252
- Željko Čučković, Sönmez Şahutoğlu, and Yunus E. Zeytuncu, A local weighted Axler-Zheng theorem in $\Bbb C^n$, Pacific J. Math. 294 (2018), no. 1, 89–106. MR 3743367, DOI 10.2140/pjm.2018.294.89
- John P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615–637. MR 657241, DOI 10.2307/2007015
- John P. D’Angelo, Several complex variables and the geometry of real hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993. MR 1224231
- John P. D’Angelo and Joseph J. Kohn, Subelliptic estimates and finite type, Several complex variables (Berkeley, CA, 1995–1996) Math. Sci. Res. Inst. Publ., vol. 37, Cambridge Univ. Press, Cambridge, 1999, pp. 199–232. MR 1748604
- D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR 929030
- Miroslav Engliš, Singular Berezin transforms, Complex Anal. Oper. Theory 1 (2007), no. 4, 533–548. MR 2358010, DOI 10.1007/s11785-007-0023-0
- Siqi Fu and Emil J. Straube, Compactness of the $\overline \partial$-Neumann problem on convex domains, J. Funct. Anal. 159 (1998), no. 2, 629–641. MR 1659575, DOI 10.1006/jfan.1998.3317
- Siqi Fu and Emil J. Straube, Compactness in the $\overline \partial$-Neumann problem, Complex analysis and geometry (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ., vol. 9, de Gruyter, Berlin, 2001, pp. 141–160.
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI 10.1007/BF02391775
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120, DOI 10.1515/9783110870312
- J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112–148. MR 153030, DOI 10.2307/1970506
- J. J. Kohn and L. Nirenberg, A pseudo-convex domain not admitting a holomorphic support function, Math. Ann. 201 (1973), 265–268. MR 330513, DOI 10.1007/BF01428194
- Steven G. Krantz, Function theory of several complex variables, AMS Chelsea Publishing, Providence, RI, 2001. Reprint of the 1992 edition. MR 1846625, DOI 10.1090/chel/340
- R. Michael Range, Holomorphic functions and integral representations in several complex variables, Graduate Texts in Mathematics, vol. 108, Springer-Verlag, New York, 1986. MR 847923, DOI 10.1007/978-1-4757-1918-5
- Sönmez Şahutoğlu, Localization of compactness of Hankel operators on pseudoconvex domains, Illinois J. Math. 56 (2012), no. 3, 795–804. MR 3161351
- Nessim Sibony, Une classe de domaines pseudoconvexes, Duke Math. J. 55 (1987), no. 2, 299–319 (French). MR 894582, DOI 10.1215/S0012-7094-87-05516-5
- Sönmez Şahutoğlu and Emil J. Straube, Analytic discs, plurisubharmonic hulls, and non-compactness of the $\overline \partial$-Neumann operator, Math. Ann. 334 (2006), no. 4, 809–820. MR 2209258, DOI 10.1007/s00208-005-0737-0
- Emil J. Straube, Lectures on the $\scr L^2$-Sobolev theory of the $\overline {\partial }$-Neumann problem, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2010. MR 2603659, DOI 10.4171/076
- Daniel Suárez, The essential norm of operators in the Toeplitz algebra on $A^p(\Bbb B_n)$, Indiana Univ. Math. J. 56 (2007), no. 5, 2185–2232. MR 2360608, DOI 10.1512/iumj.2007.56.3095
Additional Information
- Željko Čučković
- Affiliation: Department of Mathematics & Statistics, University of Toledo, Toledo, Ohio 43606
- MR Author ID: 294593
- Email: Zeljko.Cuckovic@utoledo.edu
- Sönmez Şahutoğlu
- Affiliation: Department of Mathematics & Statistics, University of Toledo, Toledo, Ohio 43606
- ORCID: 0000-0003-0490-0113
- Email: Sonmez.Sahutoglu@utoledo.edu
- Received by editor(s): September 19, 2019
- Received by editor(s) in revised form: April 1, 2020, and April 27, 2020
- Published electronically: January 26, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 2521-2540
- MSC (2020): Primary 47B35; Secondary 32W05
- DOI: https://doi.org/10.1090/tran/8201
- MathSciNet review: 4223024