## Vector bundles induced from jet schemes

HTML articles powered by AMS MathViewer

- by Bailin Song PDF
- Trans. Amer. Math. Soc.
**374**(2021), 2661-2685 Request permission

## Abstract:

A family of holomorphic vector bundles is constructed on a complex manifold $X$. The spaces of the holomorphic sections of these bundles are calculated in certain cases. As an application, if $X$ is an $N$-dimensional compact Kähler manifold with holonomy group $SU(N)$, the space of holomorphic vector fields on its jet scheme $J_m(X)$ is calculated. We also prove that the space of the global sections of the chiral de Rham complex of a K3 surface is the simple $\mathcal N=4$ superconformal vertex algebra with central charge $6$.## References

- Joel Ekstrand, Reimundo Heluani, Johan Källén, and Maxim Zabzine,
*Chiral de Rham complex on Riemannian manifolds and special holonomy*, Comm. Math. Phys.**318**(2013), no. 3, 575–613. MR**3027580**, DOI 10.1007/s00220-013-1659-4 - Lawrence Ein and Mircea Mustaţă,
*Jet schemes and singularities*, Algebraic geometry—Seattle 2005. Part 2, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 505–546. MR**2483946**, DOI 10.1090/pspum/080.2/2483946 - Dominic D. Joyce,
*Compact manifolds with special holonomy*, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. MR**1787733** - Victor Kac,
*Vertex algebras for beginners*, 2nd ed., University Lecture Series, vol. 10, American Mathematical Society, Providence, RI, 1998. MR**1651389**, DOI 10.1090/ulect/010 - M. Kapranov,
*Rozansky-Witten invariants via Atiyah classes*, Compositio Math.**115**(1999), no. 1, 71–113. MR**1671737**, DOI 10.1023/A:1000664527238 - A. Kapustin,
*Chiral de Rham complex and the half-twisted sigma-model*. arXiv:hep-th/0504074. - Andrew R. Linshaw, Gerald W. Schwarz, and Bailin Song,
*Jet schemes and invariant theory*, Ann. Inst. Fourier (Grenoble)**65**(2015), no. 6, 2571–2599 (English, with English and French summaries). MR**3449590** - Andrew R. Linshaw, Gerald W. Schwarz, and Bailin Song,
*Arc spaces and the vertex algebra commutant problem*, Adv. Math.**277**(2015), 338–364. MR**3336089**, DOI 10.1016/j.aim.2015.03.007 - Fyodor Malikov, Vadim Schechtman, and Arkady Vaintrob,
*Chiral de Rham complex*, Comm. Math. Phys.**204**(1999), no. 2, 439–473. MR**1704283**, DOI 10.1007/s002200050653 - Fyodor Malikov and Vadim Schechtman,
*Chiral de Rham complex. II*, Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, vol. 194, Amer. Math. Soc., Providence, RI, 1999, pp. 149–188. MR**1729362**, DOI 10.1090/trans2/194/07 - Fyodor Malikov and Vadim Schechtman,
*Chiral Poincaré duality*, Math. Res. Lett.**6**(1999), no. 5-6, 533–546. MR**1739212**, DOI 10.4310/MRL.1999.v6.n5.a6 - Bailin Song,
*The global sections of the chiral de Rham complex on a Kummer surface*, Int. Math. Res. Not. IMRN**14**(2016), 4271–4296. MR**3556419**, DOI 10.1093/imrn/rnv274 - B. Song,
*Chiral Hodge cohomology and Mathieu moonshine*, arXiv:1705.04060 [math.QA]. - Hermann Weyl,
*The Classical Groups. Their Invariants and Representations*, Princeton University Press, Princeton, N.J., 1939. MR**0000255** - K. Yano and S. Bochner,
*Curvature and Betti numbers*, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. MR**0062505**

## Additional Information

**Bailin Song**- Affiliation: School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Email: bailinso@ustc.edu.cn
- Received by editor(s): May 3, 2018
- Received by editor(s) in revised form: July 1, 2020, and July 9, 2020
- Published electronically: February 2, 2021
- Additional Notes: The author was supported by National Natrual Science Foundation of China No.11771416
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**374**(2021), 2661-2685 - MSC (2020): Primary 17B69, 53C07, 32L10
- DOI: https://doi.org/10.1090/tran/8239
- MathSciNet review: 4223029