Langlands-Shahidi $L$-functions for $GSpin$ groups and the generic Arthur packet conjecture
HTML articles powered by AMS MathViewer
- by Yeansu Kim PDF
- Trans. Amer. Math. Soc. 374 (2021), 2559-2580 Request permission
Abstract:
We prove that Langlands-Shahidi $L$-functions in the case of $GSpin$ groups over a non-Archimedean local field of characteristic zero are Artin $L$-functions through the local Langlands correspondence. This has an application in the proof of a weak version of the generic Arthur packet conjecture. Furthermore, we study and describe a local $L$-packet that contains a generic member in the case of $GSpin$ groups. Using this description of a local $L$-packet, we strengthen a weak version of the generic Arthur packet conjecture in the case of $GSpin$ groups (i.e. a local version of the generalized Ramanujan conjecture).References
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Mahdi Asgari, Local $L$-functions for split spinor groups, Canad. J. Math. 54 (2002), no. 4, 673–693. MR 1913914, DOI 10.4153/CJM-2002-025-8
- Mahdi Asgari and Freydoon Shahidi, Generic transfer for general spin groups, Duke Math. J. 132 (2006), no. 1, 137–190. MR 2219256, DOI 10.1215/S0012-7094-06-13214-3
- Dubravka Ban, Symmetry of Arthur parameters under Aubert involution, J. Lie Theory 16 (2006), no. 2, 251–270. MR 2197592
- Joseph N. Bernstein, $P$-invariant distributions on $\textrm {GL}(N)$ and the classification of unitary representations of $\textrm {GL}(N)$ (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 50–102. MR 748505, DOI 10.1007/BFb0073145
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172
- Y. Cai, S. Friedberg, and E. Kaplan, Doubling constructions: local and global theory, with an application to global functoriality for non-generic cuspidal representations, preprint, available at arXiv:1802.02637.
- W. Casselman, Introduction to the Theory of Admissible Representations of $p$-Adic Reductive Groups. (1995) (preprint available at: http://www.math.ubc.ca/\textasciitilde cass/research/pdf/p-adic-book.pdf).
- J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, Functoriality for the classical groups, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 163–233. MR 2075885, DOI 10.1007/s10240-004-0020-z
- J. W. Cogdell, F. Shahidi, and T.-L. Tsai, Local Langlands correspondence for $\textrm {GL}_n$ and the exterior and symmetric square $\varepsilon$-factors, Duke Math. J. 166 (2017), no. 11, 2053–2132. MR 3694565, DOI 10.1215/00127094-2017-0001
- Radhika Ganapathy and Luis Lomelí, On twisted exterior and symmetric square $\gamma$-factors, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 3, 1105–1132 (English, with English and French summaries). MR 3449175
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- Volker Heiermann, Décomposition spectrale et représentations spéciales d’un groupe réductif $p$-adique, J. Inst. Math. Jussieu 3 (2004), no. 3, 327–395 (French, with English and French summaries). MR 2074429, DOI 10.1017/S1474748004000106
- Volker Heiermann, Orbites unipotentes et pôles d’ordre maximal de la fonction $\mu$ de Harish-Chandra, Canad. J. Math. 58 (2006), no. 6, 1203–1228 (French, with French summary). MR 2270924, DOI 10.4153/CJM-2006-043-8
- Volker Heiermann, Unipotent orbits and local $L$-functions, J. Reine Angew. Math. 596 (2006), 103–114. MR 2254807, DOI 10.1515/CRELLE.2006.054
- Volker Heiermann and Yeansu Kim, On the generic local Langlands correspondence for $GSpin$ groups, Trans. Amer. Math. Soc. 369 (2017), no. 6, 4275–4291. MR 3624409, DOI 10.1090/tran/6791
- V. Heiermann and G. Muić, On the standard modules conjecture, Math. Z. 255 (2007), no. 4, 847–853. MR 2274538, DOI 10.1007/s00209-006-0052-9
- Volker Heiermann and Eric Opdam, On the tempered $L$-functions conjecture, Amer. J. Math. 135 (2013), no. 3, 777–799. MR 3068402, DOI 10.1353/ajm.2013.0026
- Guy Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs $\epsilon$ de paires, Invent. Math. 113 (1993), no. 2, 339–350 (French, with English and French summaries). MR 1228128, DOI 10.1007/BF01244309
- Guy Henniart, Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique, Invent. Math. 139 (2000), no. 2, 439–455 (French, with English summary). MR 1738446, DOI 10.1007/s002220050012
- Guy Henniart, Correspondance de Langlands et fonctions $L$ des carrés extérieur et symétrique, Int. Math. Res. Not. IMRN 4 (2010), 633–673 (French). MR 2595008, DOI 10.1093/imrn/rnp150
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
- Chris Jantzen and Baiying Liu, The generic dual of $p$-adic split $SO_{2n}$ and local Langlands parameters, Israel J. Math. 204 (2014), no. 1, 199–260. MR 3273456, DOI 10.1007/s11856-014-1091-2
- Wook Kim, Square integrable representations and the standard module conjecture for general spin groups, Canad. J. Math. 61 (2009), no. 3, 617–640. MR 2514488, DOI 10.4153/CJM-2009-033-3
- Yeansu Kim, Strongly positive representations of $GSpin_{2n+1}$ and the Jacquet module method, Math. Z. 279 (2015), no. 1-2, 271–296. With an appendix by Ivan Matić. MR 3299853, DOI 10.1007/s00209-014-1367-6
- Yeansu Kim, Strongly positive representations of even GSpin groups, Pacific J. Math. 280 (2016), no. 1, 69–88. MR 3441217, DOI 10.2140/pjm.2016.280.69
- Y. Kim and I. Matić, Discrete series of odd general spin groups, preprint, arXiv:1706.01111.
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- Baiying Liu, Genericity of representations of $p$-adic $\textrm {Sp}_{2n}$ and local Langlands parameters, Canad. J. Math. 63 (2011), no. 5, 1107–1136. MR 2865733, DOI 10.4153/CJM-2011-017-2
- Ivan Matić, Strongly positive representations of metaplectic groups, J. Algebra 334 (2011), 255–274. MR 2787663, DOI 10.1016/j.jalgebra.2011.02.015
- Colette Mœglin, Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, Amer. Math. Soc., Providence, RI, 2014, pp. 295–336 (French, with English summary). MR 3220932, DOI 10.1090/conm/614/12254
- Colette Mœglin and Marko Tadić, Construction of discrete series for classical $p$-adic groups, J. Amer. Math. Soc. 15 (2002), no. 3, 715–786. MR 1896238, DOI 10.1090/S0894-0347-02-00389-2
- Chung Pang Mok, Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 235 (2015), no. 1108, vi+248. MR 3338302, DOI 10.1090/memo/1108
- Freydoon Shahidi, Functional equation satisfied by certain $L$-functions, Compositio Math. 37 (1978), no. 2, 171–207. MR 498494
- Freydoon Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no. 2, 297–355. MR 610479, DOI 10.2307/2374219
- Freydoon Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), no. 4, 973–1007. MR 816396, DOI 10.1215/S0012-7094-85-05252-4
- Freydoon Shahidi, On the Ramanujan conjecture and finiteness of poles for certain $L$-functions, Ann. of Math. (2) 127 (1988), no. 3, 547–584. MR 942520, DOI 10.2307/2007005
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- Freydoon Shahidi, On multiplicativity of local factors, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 3, Weizmann, Jerusalem, 1990, pp. 279–289. MR 1159120
- Freydoon Shahidi, Eisenstein series and automorphic $L$-functions, American Mathematical Society Colloquium Publications, vol. 58, American Mathematical Society, Providence, RI, 2010. MR 2683009, DOI 10.1090/coll/058
- Freydoon Shahidi, Arthur packets and the Ramanujan conjecture, Kyoto J. Math. 51 (2011), no. 1, 1–23. MR 2784745, DOI 10.1215/0023608X-2010-018
- Allan J. Silberger, The Langlands quotient theorem for $p$-adic groups, Math. Ann. 236 (1978), no. 2, 95–104. MR 507262, DOI 10.1007/BF01351383
- Allan J. Silberger, Special representations of reductive $p$-adic groups are not integrable, Ann. of Math. (2) 111 (1980), no. 3, 571–587. MR 577138, DOI 10.2307/1971110
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084
Additional Information
- Yeansu Kim
- Affiliation: Department of Mathematics Education, Chonnam National University, Gwangju city, Korea
- MR Author ID: 1094118
- ORCID: 0000-0001-9427-6136
- Email: ykim@jnu.ac.kr
- Received by editor(s): December 26, 2017
- Received by editor(s) in revised form: September 15, 2019, and May 27, 2020
- Published electronically: February 2, 2021
- Additional Notes: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2017R1C1B2010081).
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 2559-2580
- MSC (2000): Primary 11F70; Secondary 22E50
- DOI: https://doi.org/10.1090/tran/8258
- MathSciNet review: 4223026