## The asymptotic distance between an ultraflat unimodular polynomial and its conjugate reciprocal

HTML articles powered by AMS MathViewer

- by Tamás Erdélyi PDF
- Trans. Amer. Math. Soc.
**374**(2021), 3077-3091 Request permission

## Abstract:

Let \begin{equation*} {\mathcal {K}}_n \coloneq \left \{Q_n: Q_n(z) = \sum _{k=0}^n{a_k z^k}, \quad a_k \in {\mathbb {C}} , \quad |a_k| = 1 \right \} . \end{equation*} A sequence $(P_n)$ of polynomials $P_n \!\in \! {\mathcal {K}}_n$ is called ultraflat if $(n + 1)^{-1/2}|P_n(e^{it})|$ converge to $1$ uniformly in $t \!\in \! {\mathbb {R}}$. In this paper we prove that \begin{equation*} \frac {1}{2\pi } \int _0^{2\pi }{\left | (P_n - P_n^*)(e^{it}) \right |^q dt} \sim \frac {{2}^q \Gamma \left (\frac {q+1}{2} \right )}{\Gamma \left (\frac q2 + 1 \right ) \sqrt {\pi }} n^{q/2} \end{equation*} for every ultraflat sequence $(P_n)$ of polynomials $P_n \in {\mathcal {K}}_n$ and for every $q \in (0,\infty )$, where $P_n^*$ is the conjugate reciprocal polynomial associated with $P_n$, $\Gamma$ is the usual gamma function, and the $\sim$ symbol means that the ratio of the left and right hand sides converges to $1$ as $n \rightarrow \infty$. Another highlight of the paper states that \begin{equation*} \frac {1}{2\pi }\int _0^{2\pi }{\left | (P_n^\prime - P_n^{*\prime })(e^{it}) \right |^2 dt} \sim \frac {2n^3}{3} \end{equation*} for every ultraflat sequence $(P_n)$ of polynomials $P_n \in {\mathcal {K}}_n$. We prove a few other new results and reprove some interesting old results as well.## References

- M. Abramowitz and I. Stegun,
*Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, Dover Publications, Inc., New York, 1972. - József Beck,
*Flat polynomials on the unit circle—note on a problem of Littlewood*, Bull. London Math. Soc.**23**(1991), no. 3, 269–277. MR**1123337**, DOI 10.1112/blms/23.3.269 - Enrico Bombieri and Jean Bourgain,
*On Kahane’s ultraflat polynomials*, J. Eur. Math. Soc. (JEMS)**11**(2009), no. 3, 627–703. MR**2505444**, DOI 10.4171/jems/163 - Peter Borwein,
*Computational excursions in analysis and number theory*, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 10, Springer-Verlag, New York, 2002. MR**1912495**, DOI 10.1007/978-0-387-21652-2 - Peter Borwein and Kwok-Kwong Stephen Choi,
*Merit factors of character polynomials*, J. London Math. Soc. (2)**61**(2000), no. 3, 706–720. MR**1766099**, DOI 10.1112/S0024610700008747 - Peter Borwein and Kwok-Kwong Stephen Choi,
*Merit factors of polynomials formed by Jacobi symbols*, Canad. J. Math.**53**(2001), no. 1, 33–50. MR**1814964**, DOI 10.4153/CJM-2001-002-6 - Peter Borwein and Kwok-Kwong Stephen Choi,
*Explicit merit factor formulae for Fekete and Turyn polynomials*, Trans. Amer. Math. Soc.**354**(2002), no. 1, 219–234. MR**1859033**, DOI 10.1090/S0002-9947-01-02859-8 - Peter Borwein and Michael Mossinghoff,
*Rudin-Shapiro-like polynomials in $L_4$*, Math. Comp.**69**(2000), no. 231, 1157–1166. MR**1709147**, DOI 10.1090/S0025-5718-00-01221-7 - Tamás Erdélyi,
*The phase problem of ultraflat unimodular polynomials: the resolution of the conjecture of Saffari*, Math. Ann.**300**(2000), 39–60. - Tamás Erdélyi,
*How far is an ultraflat sequence of unimodular polynomials from being conjugate-reciprocal?*, Michigan Math. J.**49**(2001), no. 2, 259–264. MR**1852302**, DOI 10.1307/mmj/1008719772 - Tamás Erdélyi,
*The resolution of Saffari’s phase problem*, C. R. Acad. Sci. Paris Sér. I Math.**331**(2000), no. 10, 803–808 (English, with English and French summaries). MR**1807192**, DOI 10.1016/S0764-4442(00)01709-2 - Tamás Erdélyi,
*Proof of Saffari’s near-orthogonality conjecture for ultraflat sequences of unimodular polynomials*, C. R. Acad. Sci. Paris Sér. I Math.**333**(2001), no. 7, 623–628 (English, with English and French summaries). MR**1868226**, DOI 10.1016/S0764-4442(01)02116-4 - Tamás Erdélyi,
*Polynomials with Littlewood-type coefficient constraints*, Approximation theory, X (St. Louis, MO, 2001) Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002, pp. 153–196. MR**1924857** - Tamás Erdélyi,
*On the real part of ultraflat sequences of unimodular polynomials: consequences implied by the resolution of the phase problem*, Math. Ann.**326**(2003), no. 3, 489–498. MR**1992274**, DOI 10.1007/s00208-003-0432-y - T. Erdélyi and P. Nevai,
*On the derivatives of unimodular polynomials (Russian)*, Mat. Sbornik**207**(2016), no. 4, 123–142, translation in Sbornik Math. 207 (2016), no. 3–4, 590–609. - Paul Erdős,
*Some unsolved problems*, Michigan Math. J.**4**(1957), 291–300. MR**98702** - Jonathan Jedwab, Daniel J. Katz, and Kai-Uwe Schmidt,
*Littlewood polynomials with small $L^4$ norm*, Adv. Math.**241**(2013), 127–136. MR**3053707**, DOI 10.1016/j.aim.2013.03.015 - Jean-Pierre Kahane,
*Sur les polynômes à coefficients unimodulaires*, Bull. London Math. Soc.**12**(1980), no. 5, 321–342 (French). MR**587702**, DOI 10.1112/blms/12.5.321 - T. W. Körner,
*On a polynomial of Byrnes*, Bull. London Math. Soc.**12**(1980), no. 3, 219–224. MR**572106**, DOI 10.1112/blms/12.3.219 - J. E. Littlewood,
*On polynomials $\sum ^{n}\pm z^{m}$, $\sum ^{n}e^{\alpha _{m}i}z^{m}$, $z=e^{\theta _{i}}$*, J. London Math. Soc.**41**(1966), 367–376. MR**196043**, DOI 10.1112/jlms/s1-41.1.367 - John E. Littlewood,
*Some problems in real and complex analysis*, D. C. Heath and Company Raytheon Education Company, Lexington, Mass., 1968. MR**0244463** - Hugh L. Montgomery,
*Littlewood polynomials*, Analytic number theory, modular forms and $q$-hypergeometric series, Springer Proc. Math. Stat., vol. 221, Springer, Cham, 2017, pp. 533–553. MR**3773937**, DOI 10.1007/978-3-319-68376-8_{3} - Andrew Odlyzko,
*Search for ultraflat polynomials with plus and minus one coefficients*, Connections in discrete mathematics, Cambridge Univ. Press, Cambridge, 2018, pp. 39–55. MR**3821831** - Hervé Queffélec and Bahman Saffari,
*Unimodular polynomials and Bernstein’s inequalities*, C. R. Acad. Sci. Paris Sér. I Math.**321**(1995), no. 3, 313–318 (English, with English and French summaries). MR**1346133** - Hervé Queffelec and Bahman Saffari,
*On Bernstein’s inequality and Kahane’s ultraflat polynomials*, J. Fourier Anal. Appl.**2**(1996), no. 6, 519–582. MR**1423528**, DOI 10.1007/s00041-001-4043-2 - B. Saffari,
*The phase behaviour of ultraflat unimodular polynomials*, Probabilistic and stochastic methods in analysis, with applications (Il Ciocco, 1991) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 372, Kluwer Acad. Publ., Dordrecht, 1992, pp. 555–572. MR**1187327**, DOI 10.1007/978-94-011-2791-2_{2}6 - Bahman Saffari,
*Some polynomial extremal problems which emerged in the twentieth century*, Twentieth century harmonic analysis—a celebration (Il Ciocco, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 201–233. MR**1858787**

## Additional Information

**Tamás Erdélyi**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: terdelyi@math.tamu.edu
- Received by editor(s): February 22, 2020
- Published electronically: February 23, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**374**(2021), 3077-3091 - MSC (2020): Primary 11C08, 41A17; Secondary 26C10, 30C15
- DOI: https://doi.org/10.1090/tran/8313
- MathSciNet review: 4237943

Dedicated: Dedicated to the memory of Jean-Pierre Kahane