The asymptotic distance between an ultraflat unimodular polynomial and its conjugate reciprocal
HTML articles powered by AMS MathViewer
- by Tamás Erdélyi PDF
- Trans. Amer. Math. Soc. 374 (2021), 3077-3091 Request permission
Abstract:
Let \begin{equation*} {\mathcal {K}}_n \coloneq \left \{Q_n: Q_n(z) = \sum _{k=0}^n{a_k z^k}, \quad a_k \in {\mathbb {C}} , \quad |a_k| = 1 \right \} . \end{equation*} A sequence $(P_n)$ of polynomials $P_n \!\in \! {\mathcal {K}}_n$ is called ultraflat if $(n + 1)^{-1/2}|P_n(e^{it})|$ converge to $1$ uniformly in $t \!\in \! {\mathbb {R}}$. In this paper we prove that \begin{equation*} \frac {1}{2\pi } \int _0^{2\pi }{\left | (P_n - P_n^*)(e^{it}) \right |^q dt} \sim \frac {{2}^q \Gamma \left (\frac {q+1}{2} \right )}{\Gamma \left (\frac q2 + 1 \right ) \sqrt {\pi }} n^{q/2} \end{equation*} for every ultraflat sequence $(P_n)$ of polynomials $P_n \in {\mathcal {K}}_n$ and for every $q \in (0,\infty )$, where $P_n^*$ is the conjugate reciprocal polynomial associated with $P_n$, $\Gamma$ is the usual gamma function, and the $\sim$ symbol means that the ratio of the left and right hand sides converges to $1$ as $n \rightarrow \infty$. Another highlight of the paper states that \begin{equation*} \frac {1}{2\pi }\int _0^{2\pi }{\left | (P_n^\prime - P_n^{*\prime })(e^{it}) \right |^2 dt} \sim \frac {2n^3}{3} \end{equation*} for every ultraflat sequence $(P_n)$ of polynomials $P_n \in {\mathcal {K}}_n$. We prove a few other new results and reprove some interesting old results as well.References
- M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1972.
- József Beck, Flat polynomials on the unit circle—note on a problem of Littlewood, Bull. London Math. Soc. 23 (1991), no. 3, 269–277. MR 1123337, DOI 10.1112/blms/23.3.269
- Enrico Bombieri and Jean Bourgain, On Kahane’s ultraflat polynomials, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 3, 627–703. MR 2505444, DOI 10.4171/jems/163
- Peter Borwein, Computational excursions in analysis and number theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 10, Springer-Verlag, New York, 2002. MR 1912495, DOI 10.1007/978-0-387-21652-2
- Peter Borwein and Kwok-Kwong Stephen Choi, Merit factors of character polynomials, J. London Math. Soc. (2) 61 (2000), no. 3, 706–720. MR 1766099, DOI 10.1112/S0024610700008747
- Peter Borwein and Kwok-Kwong Stephen Choi, Merit factors of polynomials formed by Jacobi symbols, Canad. J. Math. 53 (2001), no. 1, 33–50. MR 1814964, DOI 10.4153/CJM-2001-002-6
- Peter Borwein and Kwok-Kwong Stephen Choi, Explicit merit factor formulae for Fekete and Turyn polynomials, Trans. Amer. Math. Soc. 354 (2002), no. 1, 219–234. MR 1859033, DOI 10.1090/S0002-9947-01-02859-8
- Peter Borwein and Michael Mossinghoff, Rudin-Shapiro-like polynomials in $L_4$, Math. Comp. 69 (2000), no. 231, 1157–1166. MR 1709147, DOI 10.1090/S0025-5718-00-01221-7
- Tamás Erdélyi, The phase problem of ultraflat unimodular polynomials: the resolution of the conjecture of Saffari, Math. Ann. 300 (2000), 39–60.
- Tamás Erdélyi, How far is an ultraflat sequence of unimodular polynomials from being conjugate-reciprocal?, Michigan Math. J. 49 (2001), no. 2, 259–264. MR 1852302, DOI 10.1307/mmj/1008719772
- Tamás Erdélyi, The resolution of Saffari’s phase problem, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 10, 803–808 (English, with English and French summaries). MR 1807192, DOI 10.1016/S0764-4442(00)01709-2
- Tamás Erdélyi, Proof of Saffari’s near-orthogonality conjecture for ultraflat sequences of unimodular polynomials, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 7, 623–628 (English, with English and French summaries). MR 1868226, DOI 10.1016/S0764-4442(01)02116-4
- Tamás Erdélyi, Polynomials with Littlewood-type coefficient constraints, Approximation theory, X (St. Louis, MO, 2001) Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002, pp. 153–196. MR 1924857
- Tamás Erdélyi, On the real part of ultraflat sequences of unimodular polynomials: consequences implied by the resolution of the phase problem, Math. Ann. 326 (2003), no. 3, 489–498. MR 1992274, DOI 10.1007/s00208-003-0432-y
- T. Erdélyi and P. Nevai, On the derivatives of unimodular polynomials (Russian), Mat. Sbornik 207 (2016), no. 4, 123–142, translation in Sbornik Math. 207 (2016), no. 3–4, 590–609.
- Paul Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291–300. MR 98702
- Jonathan Jedwab, Daniel J. Katz, and Kai-Uwe Schmidt, Littlewood polynomials with small $L^4$ norm, Adv. Math. 241 (2013), 127–136. MR 3053707, DOI 10.1016/j.aim.2013.03.015
- Jean-Pierre Kahane, Sur les polynômes à coefficients unimodulaires, Bull. London Math. Soc. 12 (1980), no. 5, 321–342 (French). MR 587702, DOI 10.1112/blms/12.5.321
- T. W. Körner, On a polynomial of Byrnes, Bull. London Math. Soc. 12 (1980), no. 3, 219–224. MR 572106, DOI 10.1112/blms/12.3.219
- J. E. Littlewood, On polynomials $\sum ^{n}\pm z^{m}$, $\sum ^{n}e^{\alpha _{m}i}z^{m}$, $z=e^{\theta _{i}}$, J. London Math. Soc. 41 (1966), 367–376. MR 196043, DOI 10.1112/jlms/s1-41.1.367
- John E. Littlewood, Some problems in real and complex analysis, D. C. Heath and Company Raytheon Education Company, Lexington, Mass., 1968. MR 0244463
- Hugh L. Montgomery, Littlewood polynomials, Analytic number theory, modular forms and $q$-hypergeometric series, Springer Proc. Math. Stat., vol. 221, Springer, Cham, 2017, pp. 533–553. MR 3773937, DOI 10.1007/978-3-319-68376-8_{3}
- Andrew Odlyzko, Search for ultraflat polynomials with plus and minus one coefficients, Connections in discrete mathematics, Cambridge Univ. Press, Cambridge, 2018, pp. 39–55. MR 3821831
- Hervé Queffélec and Bahman Saffari, Unimodular polynomials and Bernstein’s inequalities, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 3, 313–318 (English, with English and French summaries). MR 1346133
- Hervé Queffelec and Bahman Saffari, On Bernstein’s inequality and Kahane’s ultraflat polynomials, J. Fourier Anal. Appl. 2 (1996), no. 6, 519–582. MR 1423528, DOI 10.1007/s00041-001-4043-2
- B. Saffari, The phase behaviour of ultraflat unimodular polynomials, Probabilistic and stochastic methods in analysis, with applications (Il Ciocco, 1991) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 372, Kluwer Acad. Publ., Dordrecht, 1992, pp. 555–572. MR 1187327, DOI 10.1007/978-94-011-2791-2_{2}6
- Bahman Saffari, Some polynomial extremal problems which emerged in the twentieth century, Twentieth century harmonic analysis—a celebration (Il Ciocco, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 201–233. MR 1858787
Additional Information
- Tamás Erdélyi
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: terdelyi@math.tamu.edu
- Received by editor(s): February 22, 2020
- Published electronically: February 23, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 3077-3091
- MSC (2020): Primary 11C08, 41A17; Secondary 26C10, 30C15
- DOI: https://doi.org/10.1090/tran/8313
- MathSciNet review: 4237943
Dedicated: Dedicated to the memory of Jean-Pierre Kahane