The asymptotic distance between an ultraflat unimodular polynomial and its conjugate reciprocal
Author:
Tamás Erdélyi
Journal:
Trans. Amer. Math. Soc. 374 (2021), 3077-3091
MSC (2020):
Primary 11C08, 41A17; Secondary 26C10, 30C15
DOI:
https://doi.org/10.1090/tran/8313
Published electronically:
February 23, 2021
MathSciNet review:
4237943
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let \begin{equation*} {\mathcal {K}}_n \coloneq \left \{Q_n: Q_n(z) = \sum _{k=0}^n{a_k z^k}, \quad a_k \in {\mathbb {C}} , \quad |a_k| = 1 \right \} . \end{equation*} A sequence $(P_n)$ of polynomials $P_n \!\in \! {\mathcal {K}}_n$ is called ultraflat if $(n + 1)^{-1/2}|P_n(e^{it})|$ converge to $1$ uniformly in $t \!\in \! {\mathbb {R}}$. In this paper we prove that \begin{equation*} \frac {1}{2\pi } \int _0^{2\pi }{\left | (P_n - P_n^*)(e^{it}) \right |^q dt} \sim \frac {{2}^q \Gamma \left (\frac {q+1}{2} \right )}{\Gamma \left (\frac q2 + 1 \right ) \sqrt {\pi }} n^{q/2} \end{equation*} for every ultraflat sequence $(P_n)$ of polynomials $P_n \in {\mathcal {K}}_n$ and for every $q \in (0,\infty )$, where $P_n^*$ is the conjugate reciprocal polynomial associated with $P_n$, $\Gamma$ is the usual gamma function, and the $\sim$ symbol means that the ratio of the left and right hand sides converges to $1$ as $n \rightarrow \infty$. Another highlight of the paper states that \begin{equation*} \frac {1}{2\pi }\int _0^{2\pi }{\left | (P_n^\prime - P_n^{*\prime })(e^{it}) \right |^2 dt} \sim \frac {2n^3}{3} \end{equation*} for every ultraflat sequence $(P_n)$ of polynomials $P_n \in {\mathcal {K}}_n$. We prove a few other new results and reprove some interesting old results as well.
- M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1972.
- József Beck, Flat polynomials on the unit circle—note on a problem of Littlewood, Bull. London Math. Soc. 23 (1991), no. 3, 269–277. MR 1123337, DOI https://doi.org/10.1112/blms/23.3.269
- Enrico Bombieri and Jean Bourgain, On Kahane’s ultraflat polynomials, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 3, 627–703. MR 2505444, DOI https://doi.org/10.4171/jems/163
- Peter Borwein, Computational excursions in analysis and number theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 10, Springer-Verlag, New York, 2002. MR 1912495
- Peter Borwein and Kwok-Kwong Stephen Choi, Merit factors of character polynomials, J. London Math. Soc. (2) 61 (2000), no. 3, 706–720. MR 1766099, DOI https://doi.org/10.1112/S0024610700008747
- Peter Borwein and Kwok-Kwong Stephen Choi, Merit factors of polynomials formed by Jacobi symbols, Canad. J. Math. 53 (2001), no. 1, 33–50. MR 1814964, DOI https://doi.org/10.4153/CJM-2001-002-6
- Peter Borwein and Kwok-Kwong Stephen Choi, Explicit merit factor formulae for Fekete and Turyn polynomials, Trans. Amer. Math. Soc. 354 (2002), no. 1, 219–234. MR 1859033, DOI https://doi.org/10.1090/S0002-9947-01-02859-8
- Peter Borwein and Michael Mossinghoff, Rudin-Shapiro-like polynomials in $L_4$, Math. Comp. 69 (2000), no. 231, 1157–1166. MR 1709147, DOI https://doi.org/10.1090/S0025-5718-00-01221-7
- Tamás Erdélyi, The phase problem of ultraflat unimodular polynomials: the resolution of the conjecture of Saffari, Math. Ann. 300 (2000), 39–60.
- Tamás Erdélyi, How far is an ultraflat sequence of unimodular polynomials from being conjugate-reciprocal?, Michigan Math. J. 49 (2001), no. 2, 259–264. MR 1852302, DOI https://doi.org/10.1307/mmj/1008719772
- Tamás Erdélyi, The resolution of Saffari’s phase problem, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 10, 803–808 (English, with English and French summaries). MR 1807192, DOI https://doi.org/10.1016/S0764-4442%2800%2901709-2
- Tamás Erdélyi, Proof of Saffari’s near-orthogonality conjecture for ultraflat sequences of unimodular polynomials, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 7, 623–628 (English, with English and French summaries). MR 1868226, DOI https://doi.org/10.1016/S0764-4442%2801%2902116-4
- Tamás Erdélyi, Polynomials with Littlewood-type coefficient constraints, Approximation theory, X (St. Louis, MO, 2001) Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002, pp. 153–196. MR 1924857
- Tamás Erdélyi, On the real part of ultraflat sequences of unimodular polynomials: consequences implied by the resolution of the phase problem, Math. Ann. 326 (2003), no. 3, 489–498. MR 1992274, DOI https://doi.org/10.1007/s00208-003-0432-y
- T. Erdélyi and P. Nevai, On the derivatives of unimodular polynomials (Russian), Mat. Sbornik 207 (2016), no. 4, 123–142, translation in Sbornik Math. 207 (2016), no. 3–4, 590–609.
- Paul Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291–300. MR 98702
- Jonathan Jedwab, Daniel J. Katz, and Kai-Uwe Schmidt, Littlewood polynomials with small $L^4$ norm, Adv. Math. 241 (2013), 127–136. MR 3053707, DOI https://doi.org/10.1016/j.aim.2013.03.015
- Jean-Pierre Kahane, Sur les polynômes à coefficients unimodulaires, Bull. London Math. Soc. 12 (1980), no. 5, 321–342 (French). MR 587702, DOI https://doi.org/10.1112/blms/12.5.321
- T. W. Körner, On a polynomial of Byrnes, Bull. London Math. Soc. 12 (1980), no. 3, 219–224. MR 572106, DOI https://doi.org/10.1112/blms/12.3.219
- J. E. Littlewood, On polynomials $\sum ^{n}\pm z^{m}$, $\sum ^{n}e^{\alpha _{m}i}z^{m}$, $z=e^{\theta _{i}}$, J. London Math. Soc. 41 (1966), 367–376. MR 196043, DOI https://doi.org/10.1112/jlms/s1-41.1.367
- John E. Littlewood, Some problems in real and complex analysis, D. C. Heath and Co. Raytheon Education Co., Lexington, Mass., 1968. MR 0244463
- Hugh L. Montgomery, Littlewood polynomials, Analytic number theory, modular forms and $q$-hypergeometric series, Springer Proc. Math. Stat., vol. 221, Springer, Cham, 2017, pp. 533–553. MR 3773937, DOI https://doi.org/10.1007/978-3-319-68376-8_3
- Andrew Odlyzko, Search for ultraflat polynomials with plus and minus one coefficients, Connections in discrete mathematics, Cambridge Univ. Press, Cambridge, 2018, pp. 39–55. MR 3821831
- Hervé Queffélec and Bahman Saffari, Unimodular polynomials and Bernstein’s inequalities, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 3, 313–318 (English, with English and French summaries). MR 1346133
- Hervé Queffelec and Bahman Saffari, On Bernstein’s inequality and Kahane’s ultraflat polynomials, J. Fourier Anal. Appl. 2 (1996), no. 6, 519–582. MR 1423528, DOI https://doi.org/10.1007/s00041-001-4043-2
- B. Saffari, The phase behaviour of ultraflat unimodular polynomials, Probabilistic and stochastic methods in analysis, with applications (Il Ciocco, 1991) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 372, Kluwer Acad. Publ., Dordrecht, 1992, pp. 555–572. MR 1187327, DOI https://doi.org/10.1007/978-94-011-2791-2_26
- Bahman Saffari, Some polynomial extremal problems which emerged in the twentieth century, Twentieth century harmonic analysis—a celebration (Il Ciocco, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 201–233. MR 1858787
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 11C08, 41A17, 26C10, 30C15
Retrieve articles in all journals with MSC (2020): 11C08, 41A17, 26C10, 30C15
Additional Information
Tamás Erdélyi
Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843
Email:
terdelyi@math.tamu.edu
Keywords:
Polynomials,
restricted coefficients,
ultraflat sequences of unimodular polynomials,
angular speed,
conjugate polynomials
Received by editor(s):
February 22, 2020
Published electronically:
February 23, 2021
Dedicated:
Dedicated to the memory of Jean-Pierre Kahane
Article copyright:
© Copyright 2021
American Mathematical Society