Linear independence of cables in the knot concordance group
Authors:
Christopher W. Davis, JungHwan Park and Arunima Ray
Journal:
Trans. Amer. Math. Soc. 374 (2021), 4449-4479
MSC (2020):
Primary 57K10
DOI:
https://doi.org/10.1090/tran/8336
Published electronically:
February 11, 2021
MathSciNet review:
4251235
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We produce infinite families of knots $\{K^i\}_{i\ge 1}$ for which the set of cables $\{K^i_{p,1}\}_{i,p\ge 1}$ is linearly independent in the knot concordance group, $\mathcal {C}$. We arrange that these examples lie arbitrarily deep in the solvable and bipolar filtrations of $\mathcal {C}$, denoted by $\{\mathcal {F}_n\}$ and $\{\mathcal {B}_n\}$ respectively. As a consequence, this result cannot be reached by any combination of algebraic concordance invariants, Casson-Gordon invariants, and Heegaard-Floer invariants such as $\tau$, $\varepsilon$, and $\Upsilon$. We give two applications of this result. First, for any $n\ge 0$, there exists an infinite family $\{K^i\}_{i\geq 1}$ such that for each fixed $i$, $\{K^i_{2^j,1}\}_{j\geq 0}$ is a basis for an infinite rank summand of $\mathcal {F}_n$ and $\{K^i_{p,1}\}_{i, p\geq 1}$ is linearly independent in $\mathcal {F}_{n}/\mathcal {F}_{n.5}$. Second, for any $n\ge 1$, we give filtered counterexamples to Kauffman’s conjecture on slice knots by constructing smoothly slice knots with genus one Seifert surfaces where one derivative curve has nontrivial Arf invariant and the other is nontrivial in both $\mathcal {F}_n/\mathcal {F}_{n.5}$ and $\mathcal {B}_{n-1}/\mathcal {B}_{n+1}$. We also give examples of smoothly slice knots with genus one Seifert surfaces such that one derivative has nontrivial Arf invariant and the other is topologically slice but not smoothly slice.
- Evan M. Bullock and Christopher William Davis, Strong coprimality and strong irreducibility of Alexander polynomials, Topology Appl. 159 (2012), no. 1, 133–143. MR 2852954, DOI https://doi.org/10.1016/j.topol.2011.08.019
- Nicolae Ciprian Bonciocat, Schönemann-Eisenstein-Dumas-type irreducibility conditions that use arbitrarily many prime numbers, Comm. Algebra 43 (2015), no. 8, 3102–3122. MR 3354081, DOI https://doi.org/10.1080/00927872.2014.910800
- Tim D. Cochran and Christopher William Davis, Counterexamples to Kauffman’s conjectures on slice knots, Adv. Math. 274 (2015), 263–284. MR 3318151, DOI https://doi.org/10.1016/j.aim.2014.12.006
- David Cimasoni and Vincent Florens, Generalized Seifert surfaces and signatures of colored links, Trans. Amer. Math. Soc. 360 (2008), no. 3, 1223–1264. MR 2357695, DOI https://doi.org/10.1090/S0002-9947-07-04176-1
- Tim D. Cochran, Bridget D. Franklin, Matthew Hedden, and Peter D. Horn, Knot concordance and homology cobordism, Proc. Amer. Math. Soc. 141 (2013), no. 6, 2193–2208. MR 3034445, DOI https://doi.org/10.1090/S0002-9939-2013-11471-1
- Jeff Cheeger and Mikhael Gromov, Bounds on the von Neumann dimension of $L^2$-cohomology and the Gauss-Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985), no. 1, 1–34. MR 806699
- Tim D. Cochran and Peter D. Horn, Structure in the bipolar filtration of topologically slice knots, Algebr. Geom. Topol. 15 (2015), no. 1, 415–428. MR 3325742, DOI https://doi.org/10.2140/agt.2015.15.415
- Jae Choon Cha, Topological minimal genus and $L^2$-signatures, Algebr. Geom. Topol. 8 (2008), no. 2, 885–909. MR 2443100, DOI https://doi.org/10.2140/agt.2008.8.885
- W. Chen, On the Upsilon invariant of cable knots, 2016. Preprint: http://arxiv.org/abs/1604.04760.
- Tim D. Cochran, Shelly Harvey, and Peter Horn, Filtering smooth concordance classes of topologically slice knots, Geom. Topol. 17 (2013), no. 4, 2103–2162. MR 3109864, DOI https://doi.org/10.2140/gt.2013.17.2103
- Tim Cochran, Shelly Harvey, and Constance Leidy, Link concordance and generalized doubling operators, Algebr. Geom. Topol. 8 (2008), no. 3, 1593–1646. MR 2443256, DOI https://doi.org/10.2140/agt.2008.8.1593
- Tim D. Cochran, Shelly Harvey, and Constance Leidy, Knot concordance and higher-order Blanchfield duality, Geom. Topol. 13 (2009), no. 3, 1419–1482. MR 2496049, DOI https://doi.org/10.2140/gt.2009.13.1419
- Tim D. Cochran, Shelly Harvey, and Constance Leidy, 2-torsion in the $n$-solvable filtration of the knot concordance group, Proc. Lond. Math. Soc. (3) 102 (2011), no. 2, 257–290. MR 2769115, DOI https://doi.org/10.1112/plms/pdq020
- Tim D. Cochran, Shelly Harvey, and Constance Leidy, Primary decomposition and the fractal nature of knot concordance, Math. Ann. 351 (2011), no. 2, 443–508. MR 2836668, DOI https://doi.org/10.1007/s00208-010-0604-5
- J. C. Cha and M. H. Kim, The bipolar filtration of topologically slice knots, 2017. Preprint: http://arxiv.org/abs/1710.07803.
- Tim D. Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004), 347–398. MR 2077670, DOI https://doi.org/10.2140/agt.2004.4.347
- Tim D. Cochran, Kent E. Orr, and Peter Teichner, Knot concordance, Whitney towers and $L^2$-signatures, Ann. of Math. (2) 157 (2003), no. 2, 433–519. MR 1973052, DOI https://doi.org/10.4007/annals.2003.157.433
- Tim D. Cochran, Kent E. Orr, and Peter Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004), no. 1, 105–123. MR 2031301, DOI https://doi.org/10.1007/s00014-001-0793-6
- Jae Choon Cha and Mark Powell, Covering link calculus and the bipolar filtration of topologically slice links, Geom. Topol. 18 (2014), no. 3, 1539–1579. MR 3228458, DOI https://doi.org/10.2140/gt.2014.18.1539
- Tim D. Cochran and Peter Teichner, Knot concordance and von Neumann $\rho $-invariants, Duke Math. J. 137 (2007), no. 2, 337–379. MR 2309149, DOI https://doi.org/10.1215/S0012-7094-07-13723-2
- Christopher William Davis, First Order Signatures and Knot Concordance, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–Rice University. MR 3130814
- Christopher William Davis, Von Neumann rho invariants and torsion in the topological knot concordance group, Algebr. Geom. Topol. 12 (2012), no. 2, 753–789. MR 2914617, DOI https://doi.org/10.2140/agt.2012.12.753
- David S. Dummit and Richard M. Foote, Abstract algebra, 3rd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004. MR 2286236
- Irving Dai, Jennifer Hom, Matthew Stoffregen, and Linh Truong, More concordance homomorphisms from knot floer homology, 2019.
- C. W. Davis, J. Park, and A. Ray, Handlebody solvable knots, 2020+. In preparation.
- John B. Etnyre, Legendrian and transversal knots, Handbook of knot theory, Elsevier B. V., Amsterdam, 2005, pp. 105–185. MR 2179261, DOI https://doi.org/10.1016/B978-044451452-3/50004-6
- Ralph H. Fox and John W. Milnor, Singularities of $2$-spheres in $4$-space and cobordism of knots, Osaka Math. J. 3 (1966), 257–267. MR 211392
- Peter Feller, JungHwan Park, and Arunima Ray, On the Upsilon invariant and satellite knots, Math. Z. 292 (2019), no. 3-4, 1431–1452. MR 3980298, DOI https://doi.org/10.1007/s00209-018-2145-7
- Michael H. Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR 1201584
- Michael H. Freedman, A surgery sequence in dimension four; the relations with knot concordance, Invent. Math. 68 (1982), no. 2, 195–226. MR 666159, DOI https://doi.org/10.1007/BF01394055
- Stavros Garoufalidis and Peter Teichner, On knots with trivial Alexander polynomial, J. Differential Geom. 67 (2004), no. 1, 167–193. MR 2153483
- Matthew Hedden, Knot Floer homology of Whitehead doubles, Geom. Topol. 11 (2007), 2277–2338. MR 2372849, DOI https://doi.org/10.2140/gt.2007.11.2277
- Matthew Hedden, On knot Floer homology and cabling. II, Int. Math. Res. Not. IMRN 12 (2009), 2248–2274. MR 2511910, DOI https://doi.org/10.1093/imrn/rnp015
- Jennifer Hom, Bordered Heegaard Floer homology and the tau-invariant of cable knots, J. Topol. 7 (2014), no. 2, 287–326. MR 3217622, DOI https://doi.org/10.1112/jtopol/jtt030
- Jennifer Hom, The knot Floer complex and the smooth concordance group, Comment. Math. Helv. 89 (2014), no. 3, 537–570. MR 3260841, DOI https://doi.org/10.4171/CMH/326
- Jennifer Hom, An infinite-rank summand of topologically slice knots, Geom. Topol. 19 (2015), no. 2, 1063–1110. MR 3336278, DOI https://doi.org/10.2140/gt.2015.19.1063
- Jennifer Hom, Correction to the article An infinite-rank summand of topologically slice knots, Geom. Topol. 23 (2019), no. 5, 2699–2700. MR 4019902, DOI https://doi.org/10.2140/gt.2019.23.2699
- Jennifer Hom and Zhongtao Wu, Four-ball genus bounds and a refinement of the Ozváth-Szabó tau invariant, J. Symplectic Geom. 14 (2016), no. 1, 305–323. MR 3523259, DOI https://doi.org/10.4310/JSG.2016.v14.n1.a12
- Bo Ju Jiang, A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc. 83 (1981), no. 1, 189–192. MR 620010, DOI https://doi.org/10.1090/S0002-9939-1981-0620010-7
- Louis H. Kauffman, On knots, Annals of Mathematics Studies, vol. 115, Princeton University Press, Princeton, NJ, 1987. MR 907872
- Akio Kawauchi, On links not cobordant to split links, Topology 19 (1980), no. 4, 321–334. MR 584558, DOI https://doi.org/10.1016/0040-9383%2880%2990017-8
- C. Kearton, Cobordism of knots and Blanchfield duality, J. London Math. Soc. (2) 10 (1975), no. 4, 406–408. MR 385873, DOI https://doi.org/10.1112/jlms/s2-10.4.406
- Se-Goo Kim, Polynomial splittings of Casson-Gordon invariants, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 1, 59–78. MR 2127228, DOI https://doi.org/10.1017/S0305004104008023
- Min Hoon Kim and Kyungbae Park, An infinite-rank summand of knots with trivial Alexander polynomial, J. Symplectic Geom. 16 (2018), no. 6, 1749–1771. MR 3934241, DOI https://doi.org/10.4310/JSG.2018.v16.n6.a5
- Wolfgang Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649
- J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244. MR 246314, DOI https://doi.org/10.1007/BF02564525
- R. A. Litherland, Signatures of iterated torus knots, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977) Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 71–84. MR 547456
- R. A. Litherland, Cobordism of satellite knots, Four-manifold theory (Durham, N.H., 1982) Contemp. Math., vol. 35, Amer. Math. Soc., Providence, RI, 1984, pp. 327–362. MR 780587, DOI https://doi.org/10.1090/conm/035/780587
- Charles Livingston, Computations of the Ozsváth-Szabó knot concordance invariant, Geom. Topol. 8 (2004), 735–742. MR 2057779, DOI https://doi.org/10.2140/gt.2004.8.735
- Charles Livingston, Order 2 algebraically slice knots, Proceedings of the Kirbyfest (Berkeley, CA, 1998) Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, pp. 335–342. MR 1734416, DOI https://doi.org/10.2140/gtm.1999.2.335
- Charles Livingston and Paul Melvin, Abelian invariants of satellite knots, Geometry and topology (College Park, Md., 1983/84) Lecture Notes in Math., vol. 1167, Springer, Berlin, 1985, pp. 217–227. MR 827271, DOI https://doi.org/10.1007/BFb0075225
- Wolfgang Lück and Thomas Schick, Various $L^2$-signatures and a topological $L^2$-signature theorem, High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, pp. 362–399. MR 2048728, DOI https://doi.org/10.1142/9789812704443_0015
- Wolfgang Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649
- Preda Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math. 572 (2004), 167–195. MR 2076124, DOI https://doi.org/10.1515/crll.2004.048
- L. Ng, The Legendrian satellite construction, 2001. Preprint: http://arxiv.org/abs/0112105.
- Lenhard Ng and Lisa Traynor, Legendrian solid-torus links, J. Symplectic Geom. 2 (2004), no. 3, 411–443. MR 2131643
- Yi Ni and Zhongtao Wu, Cosmetic surgeries on knots in $S^3$, J. Reine Angew. Math. 706 (2015), 1–17. MR 3393360, DOI https://doi.org/10.1515/crelle-2013-0067
- Peter Ozsváth and Zoltán Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615–639. MR 2026543, DOI https://doi.org/10.2140/gt.2003.7.615
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158. MR 2113019, DOI https://doi.org/10.4007/annals.2004.159.1027
- Peter S. Ozsváth, András I. Stipsicz, and Zoltán Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017), 366–426. MR 3667589, DOI https://doi.org/10.1016/j.aim.2017.05.017
- JungHwan Park, A construction of slice knots via annulus modifications, Topology Appl. 238 (2018), 1–19. MR 3775112, DOI https://doi.org/10.1016/j.topol.2018.01.010
- Olga Plamenevskaya, Bounds for the Thurston-Bennequin number from Floer homology, Algebr. Geom. Topol. 4 (2004), 399–406. MR 2077671, DOI https://doi.org/10.2140/agt.2004.4.399
- JungHwan Park and Arunima Ray, A family of non-split topologically slice links with arbitrarily large smooth slice genus, Proc. Amer. Math. Soc. 146 (2018), no. 1, 439–448. MR 3723153, DOI https://doi.org/10.1090/proc/13724
- Arunima Ray, Satellite operators with distinct iterates in smooth concordance, Proc. Amer. Math. Soc. 143 (2015), no. 11, 5005–5020. MR 3391056, DOI https://doi.org/10.1090/S0002-9939-2015-12625-1
- H. Seifert, On the homology invariants of knots, Quart. J. Math. Oxford Ser. (2) 1 (1950), 23–32. MR 35436, DOI https://doi.org/10.1093/qmath/1.1.23
Retrieve articles in Transactions of the American Mathematical Society with MSC (2020): 57K10
Retrieve articles in all journals with MSC (2020): 57K10
Additional Information
Christopher W. Davis
Affiliation:
Department of Mathematics, University of Wisconsin–Eau Claire, 105 Garfield Avenue P.O. Box 4004, Eau Claire, Wisconsin 54702
MR Author ID:
958152
Email:
daviscw@uwec.edu
JungHwan Park
Affiliation:
Department of Mathematical Sciences, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, South Korea
MR Author ID:
1188099
Email:
jungpark0817@gmail.com
Arunima Ray
Affiliation:
Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
MR Author ID:
1039665
Email:
aruray@gmail.com
Received by editor(s):
May 6, 2019
Received by editor(s) in revised form:
November 10, 2020
Published electronically:
February 11, 2021
Article copyright:
© Copyright 2021
American Mathematical Society