Statistics for Iwasawa invariants of elliptic curves
HTML articles powered by AMS MathViewer
- by Debanjana Kundu and Anwesh Ray PDF
- Trans. Amer. Math. Soc. 374 (2021), 7945-7965 Request permission
Corrigendum: Trans. Amer. Math. Soc. (to appear).
Abstract:
We study the average behaviour of the Iwasawa invariants for the Selmer groups of elliptic curves, setting out new directions in arithmetic statistics and Iwasawa theory.References
- L. Babinkostova, J. C. Bahr, Y. H. Kim, E. Neyman, and G. K. Taylor, Anomalous primes and the elliptic Korselt criterion, J. Number Theory 201 (2019), 108–123. MR 3958043, DOI 10.1016/j.jnt.2019.02.013
- Dominique Bernardi and Bernadette Perrin-Riou, Variante $p$-adique de la conjecture de Birch et Swinnerton-Dyer (le cas supersingulier), C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 3, 227–232 (French, with English and French summaries). MR 1233417
- Armand Brumer, The average rank of elliptic curves. I, Invent. Math. 109 (1992), no. 3, 445–472. MR 1176198, DOI 10.1007/BF01232033
- John Coates and Gary McConnell, Iwasawa theory of modular elliptic curves of analytic rank at most $1$, J. London Math. Soc. (2) 50 (1994), no. 2, 243–264. MR 1291735, DOI 10.1112/jlms/50.2.243
- J. Coates and R. Sujatha, Galois cohomology of elliptic curves, Tata Institute of Fundamental Research Lectures on Mathematics, vol. 88, Published by Narosa Publishing House, New Delhi; for the Tata Institute of Fundamental Research, Mumbai, 2000. MR 1759312
- J. Coates and R. Sujatha, Fine Selmer groups of elliptic curves over $p$-adic Lie extensions, Math. Ann. 331 (2005), no. 4, 809–839. MR 2148798, DOI 10.1007/s00208-004-0609-z
- J. Cremona and M. Sadek, Local and global densities for Weierstrass models of elliptic curves. preprint, arXiv:2003.08454, 2020.
- Christophe Delaunay, Heuristics on Tate-Shafarevitch groups of elliptic curves defined over $\Bbb Q$, Experiment. Math. 10 (2001), no. 2, 191–196. MR 1837670
- Byoung Du Kim, The plus/minus Selmer groups for supersingular primes, J. Aust. Math. Soc. 95 (2013), no. 2, 189–200. MR 3142355, DOI 10.1017/S1446788713000165
- Dorian Goldfeld, Conjectures on elliptic curves over quadratic fields, Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979) Lecture Notes in Math., vol. 751, Springer, Berlin, 1979, pp. 108–118. MR 564926
- R. Greenberg. Arithmetic Theory of Elliptic Curves: Lectures given at the 3rd Session of the Centro Internazionale Matematico Estivo (CIME) held in Cetaro, Italy, July 12-19, 1997. Springer, 1999.
- Susan Howson, Euler characteristics as invariants of Iwasawa modules, Proc. London Math. Soc. (3) 85 (2002), no. 3, 634–658. MR 1936815, DOI 10.1112/S0024611502013680
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), ix, 117–290 (English, with English and French summaries). Cohomologies $p$-adiques et applications arithmétiques. III. MR 2104361
- Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI, 1999. MR 1659828, DOI 10.1090/coll/045
- Shin-ichi Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), no. 1, 1–36. MR 1965358, DOI 10.1007/s00222-002-0265-4
- V. A. Kolyvagin, Finiteness of $E(\textbf {Q})$ and SH$(E,\textbf {Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 3, 523–541. MR 954295, DOI 10.1070/IM1989v032n03ABEH000779
- Antonio Lei and Ramdorai Sujatha, On Selmer groups in the supersingular reduction case, Tokyo J. Math. 43 (2020), no. 2, 455–479. MR 4185844, DOI 10.3836/tjm/1502179319
- Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266. MR 444670, DOI 10.1007/BF01389815
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196
- Loren D. Olson, Hasse invariants and anomalous primes for elliptic curves with complex multiplication, J. Number Theory 8 (1976), no. 4, 397–414. MR 450191, DOI 10.1016/0022-314X(76)90087-1
- Bernadette Perrin-Riou, Fonctions $L$ $p$-adiques d’une courbe elliptique et points rationnels, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 945–995 (French, with English and French summaries). MR 1252935
- Bernadette Perrin-Riou, Théorie d’Iwasawa des représentations $p$-adiques sur un corps local, Invent. Math. 115 (1994), no. 1, 81–161 (French). With an appendix by Jean-Marc Fontaine. MR 1248080, DOI 10.1007/BF01231755
- Hourong Qin, Anomalous primes of the elliptic curve $E_D\colon y^2=x^3+D$, Proc. Lond. Math. Soc. (3) 112 (2016), no. 2, 415–453. MR 3471254, DOI 10.1112/plms/pdv072
- A. Ray and R. Sujatha, Euler characteristics and their congruences for multi-signed Selmer groups, preprint, arXiv:2011.05387, 2020.
- Penny C. Ridgdill, On the frequency of finitely anomalous elliptic curves, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–University of Massachusetts Amherst. MR 2941460
- M. Sadek, Counting elliptic curves with bad reduction over a prescribed set of primes, preprint, arXiv:1704.02056, 2017.
- Peter Schneider, $p$-adic height pairings. I, Invent. Math. 69 (1982), no. 3, 401–409. MR 679765, DOI 10.1007/BF01389362
- Peter Schneider, $p$-adic height pairings. II, Invent. Math. 79 (1985), no. 2, 329–374. MR 778132, DOI 10.1007/BF01388978
- René Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987), no. 2, 183–211. MR 914657, DOI 10.1016/0097-3165(87)90003-3
- A. N. Shankar, A. Shankar, and X. Wang, Families of elliptic curves ordered by conductor. Compos. Math., to appear.
- Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094, DOI 10.1007/978-0-387-09494-6
- Florian Sprung, A formulation of $p$-adic versions of the Birch and Swinnerton-Dyer conjectures in the supersingular case, Res. Number Theory 1 (2015), Paper No. 17, 13. MR 3501001, DOI 10.1007/s40993-015-0018-2
- X. Wan, Iwasawa main conjecture for supersingular elliptic curves and BSD conjecture, preprint, arXiv:1411.6352, 2014.
- Mark Watkins, Some heuristics about elliptic curves, Experiment. Math. 17 (2008), no. 1, 105–125. MR 2410120
- C. Wuthrich, The fine Selmer group and height pairings. PhD thesis, University of Cambridge, 2004.
- Christian Wuthrich, On $p$-adic heights in families of elliptic curves, J. London Math. Soc. (2) 70 (2004), no. 1, 23–40. MR 2064750, DOI 10.1112/S0024610704005277
- Sarah Livia Zerbes, Generalised Euler characteristics of Selmer groups, Proc. Lond. Math. Soc. (3) 98 (2009), no. 3, 775–796. MR 2500872, DOI 10.1112/plms/pdn049
Additional Information
- Debanjana Kundu
- Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- MR Author ID: 1409674
- ORCID: 0000-0002-1545-3841
- Email: dkundu@math.ubc.ca
- Anwesh Ray
- Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- MR Author ID: 1376642
- Email: anweshray@math.ubc.ca
- Received by editor(s): February 10, 2021
- Published electronically: July 27, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 374 (2021), 7945-7965
- MSC (2020): Primary 11R23, 11R45, 11G05
- DOI: https://doi.org/10.1090/tran/8478
- MathSciNet review: 4328687