The simplicial coalgebra of chains determines homotopy types rationally and one prime at a time
HTML articles powered by AMS MathViewer
- by Manuel Rivera, Felix Wierstra and Mahmoud Zeinalian PDF
- Trans. Amer. Math. Soc. 375 (2022), 3267-3303 Request permission
Abstract:
We prove that the simplicial cocommutative coalgebra of singular chains on a connected topological space determines the homotopy type rationally and one prime at a time, without imposing any restriction on the fundamental group. In particular, the fundamental group and the homology groups with coefficients in arbitrary local systems of vector spaces are completely determined by the natural algebraic structure of the chains. The algebraic structure is presented as the class of the simplicial cocommutative coalgebra of chains under a notion of weak equivalence induced by a functor from coalgebras to algebras coined by Adams as the cobar construction. The fundamental group is determined by a quadratic equation on the zeroth homology of the cobar construction of the normalized chains which involves Steenrod’s chain homotopies for cocommutativity of the coproduct. The homology groups with local coefficients are modeled by an algebraic analog of the universal cover which is invariant under our notion of weak equivalence. We conjecture that the integral homotopy type is also determined by the simplicial coalgebra of integral chains, which we prove when the universal cover is of finite type.References
- J. F. Adams, On the cobar construction, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 409–412. MR 79266, DOI 10.1073/pnas.42.7.409
- Hans-Joachim Baues, The cobar construction as a Hopf algebra, Invent. Math. 132 (1998), no. 3, 467–489. MR 1625728, DOI 10.1007/s002220050231
- Clemens Berger and Benoit Fresse, Combinatorial operad actions on cochains, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 1, 135–174. MR 2075046, DOI 10.1017/S0305004103007138
- A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133–150. MR 380779, DOI 10.1016/0040-9383(75)90023-3
- A. K. Bousfield and D. M. Kan, Localization and completion in homotopy theory, Bull. Amer. Math. Soc. 77 (1971), 1006–1010. MR 296935, DOI 10.1090/S0002-9904-1971-12837-9
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- Edgar H. Brown Jr., Twisted tensor products. I, Ann. of Math. (2) 69 (1959), 223–246. MR 105687, DOI 10.2307/1970101
- Joe Chuang, Julian Holstein, and Andrey Lazarev, Homotopy theory of monoids and derived localization, J. Homotopy Relat. Struct. 16 (2021), no. 2, 175–189. MR 4266203, DOI 10.1007/s40062-021-00276-6
- Edward B. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107–209 (1971). MR 279808, DOI 10.1016/0001-8708(71)90015-6
- Samuel Eilenberg and Saunders Mac Lane, On the groups $H(\Pi ,n)$. I, Ann. of Math. (2) 58 (1953), 55–106. MR 56295, DOI 10.2307/1969820
- Paul G. Goerss, Simplicial chains over a field and $p$-local homotopy theory, Math. Z. 220 (1995), no. 4, 523–544. MR 1363853, DOI 10.1007/BF02572629
- Antonio Gómez-Tato, Stephen Halperin, and Daniel Tanré, Rational homotopy theory for non-simply connected spaces, Trans. Amer. Math. Soc. 352 (2000), no. 4, 1493–1525. MR 1653355, DOI 10.1090/S0002-9947-99-02463-0
- Kathryn Hess and Andrew Tonks, The loop group and the cobar construction, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1861–1876. MR 2587471, DOI 10.1090/S0002-9939-09-10238-1
- Vladimir Hinich and Vadim Schechtman, Deformation theory and Lie algebra homology. I, Algebra Colloq. 4 (1997), no. 2, 213–240. MR 1682729
- Dale Husemoller, John C. Moore, and James Stasheff, Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974), 113–185. MR 365571, DOI 10.1016/0022-4049(74)90045-0
- Tornike Kadeishvili and Samson Saneblidze, A cubical model for a fibration, J. Pure Appl. Algebra 196 (2005), no. 2-3, 203–228. MR 2110523, DOI 10.1016/j.jpaa.2004.08.017
- M. Kontsevich, Symplectic geometry of homological algebra, Preprint available at the author’s homepage, 2009.
- K. Lefevre-Hasegawa, Sur les A-infini catégories, Ph.D. Thesis, Univ. Paris 7, arXiv:0310337, 2003.
- Jean-Louis Loday and Bruno Vallette, Algebraic operads, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346, Springer, Heidelberg, 2012. MR 2954392, DOI 10.1007/978-3-642-30362-3
- Michael A. Mandell, $E_\infty$ algebras and $p$-adic homotopy theory, Topology 40 (2001), no. 1, 43–94. MR 1791268, DOI 10.1016/S0040-9383(99)00053-1
- Michael A. Mandell, Cochains and homotopy type, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 213–246. MR 2233853, DOI 10.1007/s10240-006-0037-6
- Leonid Positselski, Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, Mem. Amer. Math. Soc. 212 (2011), no. 996, vi+133. MR 2830562, DOI 10.1090/S0065-9266-2010-00631-8
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- George Raptis, Simplicial presheaves of coalgebras, Algebr. Geom. Topol. 13 (2013), no. 4, 1967–2000. MR 3073905, DOI 10.2140/agt.2013.13.1967
- M. Rivera, Adams’s cobar construction revisited, Submitted, arXiv:1910.08455, 2019.
- Manuel Rivera and Mahmoud Zeinalian, Cubical rigidification, the cobar construction and the based loop space, Algebr. Geom. Topol. 18 (2018), no. 7, 3789–3820. MR 3892231, DOI 10.2140/agt.2018.18.3789
- Manuel Rivera and Mahmoud Zeinalian, Singular chains and the fundamental group, Fund. Math. 253 (2021), no. 3, 297–316. MR 4205977, DOI 10.4064/fm734-6-2020
- Manuel Rivera, Felix Wierstra, and Mahmoud Zeinalian, The functor of singular chains detects weak homotopy equivalences, Proc. Amer. Math. Soc. 147 (2019), no. 11, 4987–4998. MR 4011530, DOI 10.1090/proc/14555
- Manuel Rivera, Felix Wierstra, and Mahmoud Zeinalian, Rational homotopy equivalences and singular chains, Algebr. Geom. Topol. 21 (2021), no. 3, 1535–1552. MR 4299674, DOI 10.2140/agt.2021.21.1535
- R. H. Szczarba, The homology of twisted cartesian products, Trans. Amer. Math. Soc. 100 (1961), 197–216. MR 137111, DOI 10.1090/S0002-9947-1961-0137111-4
- N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. (2) 48 (1947), 290–320. MR 22071, DOI 10.2307/1969172
- Dennis P. Sullivan, Geometric topology: localization, periodicity and Galois symmetry, $K$-Monographs in Mathematics, vol. 8, Springer, Dordrecht, 2005. The 1970 MIT notes; Edited and with a preface by Andrew Ranicki. MR 2162361, DOI 10.1007/1-4020-3512-8
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078, DOI 10.1007/BF02684341
- Allen Yuan, On the Higher Frobenius, ProQuest LLC, Ann Arbor, MI, 2020. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 4272336
Additional Information
- Manuel Rivera
- Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
- MR Author ID: 1022985
- ORCID: 0000-0002-1817-7619
- Email: manuelr@purdue.edu
- Felix Wierstra
- Affiliation: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 107, Postbus 94248, 1090 GE Amsterdam, The Netherlands
- MR Author ID: 1295763
- Email: f.p.wierstra@uva.nl
- Mahmoud Zeinalian
- Affiliation: Department of Mathematics, City University of New York, Lehman College, 250 Bedford Park Blvd W, Bronx, New York 10468
- MR Author ID: 773273
- Email: mahmoud.zeinalian@lehman.cuny.edu
- Received by editor(s): May 23, 2021
- Received by editor(s) in revised form: September 30, 2021
- Published electronically: February 17, 2022
- Additional Notes: The first author was supported by NSF Grant 210554 and the Karen EDGE Fellowship
The second author was supported by grant number 2019-00536 from the Swedish Research Council - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 3267-3303
- MSC (2020): Primary 55P15, 57T30, 55P60, 55P62, 55U15
- DOI: https://doi.org/10.1090/tran/8579
- MathSciNet review: 4402661