The equivalence theory for infinite type hypersurfaces in $\mathbb {C}^{2}$
HTML articles powered by AMS MathViewer
- by Peter Ebenfelt, Ilya Kossovskiy and Bernhard Lamel PDF
- Trans. Amer. Math. Soc. 375 (2022), 4019-4056 Request permission
Abstract:
We develop a classification theory for real-analytic hypersurfaces in $\mathbb {C}^{2}$ in the case when the hypersurface is of infinite type at the reference point. This is the remaining, not yet understood case in $\mathbb {C}^{2}$ in the Problème local, formulated by H. Poincaré in 1907 and asking for a complete biholomorphic classification of real hypersurfaces in complex space. One novel aspect of our results is a notion of smooth normal forms for real-analytic hypersurfaces. We rely fundamentally on the recently developed CR-DS technique in CR-geometry.References
- M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, Real submanifolds in complex space and their mappings, Princeton Mathematical Series, vol. 47, Princeton University Press, Princeton, NJ, 1999. MR 1668103, DOI 10.1515/9781400883967
- George W. Bluman and Sukeyuki Kumei, Symmetries and differential equations, Applied Mathematical Sciences, vol. 81, Springer-Verlag, New York, 1989. MR 1006433, DOI 10.1007/978-1-4757-4307-4
- Boele L. J. Braaksma, Multisummability of formal power series solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 517–540 (English, with English and French summaries). MR 1182640
- Élie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes II, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 1 (1932), no. 4, 333–354 (French). MR 1556687
- Elie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl. 11 (1933), no. 1, 17–90 (French). MR 1553196, DOI 10.1007/BF02417822
- Élie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes II, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 1 (1932), no. 4, 333–354 (French). MR 1556687
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI 10.1007/BF02392146
- P. Ebenfelt, B. Lamel, and D. Zaitsev, Finite jet determination of local analytic CR automorphisms and their parametrization by 2-jets in the finite type case, Geom. Funct. Anal. 13 (2003), no. 3, 546–573. MR 1995799, DOI 10.1007/s00039-003-0422-y
- Peter Ebenfelt, Bernhard Lamel, and Dmitri Zaitsev, Normal form for infinite type hypersurfaces in $\Bbb C^2$ with nonvanishing Levi form derivative, Doc. Math. 22 (2017), 165–190. MR 3609198
- Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, Graduate Studies in Mathematics, vol. 86, American Mathematical Society, Providence, RI, 2008. MR 2363178, DOI 10.1090/gsm/086
- Robert Juhlin and Bernhard Lamel, On maps between nonminimal hypersurfaces, Math. Z. 273 (2013), no. 1-2, 515–537. MR 3010173, DOI 10.1007/s00209-012-1017-9
- Martin Kolář, Normal forms for hypersurfaces of finite type in ${\Bbb C}^2$, Math. Res. Lett. 12 (2005), no. 5-6, 897–910. MR 2189248, DOI 10.4310/MRL.2005.v12.n6.a10
- I. Kossovskiy and B. Lamel, New extension phenomena for solutions of tangential Cauchy-Riemann equations, Comm. Partial Differential Equations 41 (2016), no. 6, 925–951. MR 3509519, DOI 10.1080/03605302.2016.1180536
- I. Kossovskiy and B. Lamel, On the analyticity of CR-diffeomorphisms, Amer. J. Math. 140 (2018), no. 1, 139–188. MR 3749192, DOI 10.1353/ajm.2018.0002
- I. Kossovskiy, B. Lamel, and L. Stolovitch, Equivalence of three-dimensional Cauchy-Riemann manifolds and multisummability theory, Adv. Math. 397 (2022), Paper No. 108117, 42. MR 4377933, DOI 10.1016/j.aim.2021.108117
- Ilya Kossovskiy and Rasul Shafikov, Analytic differential equations and spherical real hypersurfaces, J. Differential Geom. 102 (2016), no. 1, 67–126. MR 3447087
- Ilya Kossovskiy and Rasul Shafikov, Divergent CR-equivalences and meromorphic differential equations, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 12, 2785–2819. MR 3576537, DOI 10.4171/JEMS/653
- I. Kossovskiy and D. Zaitsev, Convergent normal form and canonical connection for hypersurfaces of finite type in $\Bbb {C}^2$, Adv. Math. 281 (2015), 670–705. MR 3366850, DOI 10.1016/j.aim.2015.06.001
- Bernhard Lamel and Nordine Mir, Finite jet determination of local CR automorphisms through resolution of degeneracies, Asian J. Math. 11 (2007), no. 2, 201–216. MR 2328892, DOI 10.4310/AJM.2007.v11.n2.a3
- Francine Meylan, A reflection principle in complex space for a class of hypersurfaces and mappings, Pacific J. Math. 169 (1995), no. 1, 135–160. MR 1346250
- H Poincaré. Les fonctions analytiques de deux variables et la représentation conforme. Palermo Rend. 23 (1907), 185–220.
- Beniamino Segre. Questioni geometriche legate colla teoria delle funzioni di due variabili complesse. Rend. Sem. Mat. Roma II. Ser. 7 (1932), no. 2, 59–107.
- A. B. Sukhov, On transformations of analytic CR-structures, Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), no. 2, 101–132 (Russian, with Russian summary); English transl., Izv. Math. 67 (2003), no. 2, 303–332. MR 1972994, DOI 10.1070/IM2003v067n02ABEH000428
- Alexandre Sukhov, Segre varieties and Lie symmetries, Math. Z. 238 (2001), no. 3, 483–492. MR 1869694, DOI 10.1007/s002090100262
- Noboru Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables, J. Math. Soc. Japan 14 (1962), 397–429. MR 145555, DOI 10.2969/jmsj/01440397
- S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), no. 1, 53–68. MR 463482, DOI 10.1007/BF01390203
Additional Information
- Peter Ebenfelt
- Affiliation: Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112
- MR Author ID: 339422
- Email: pebenfelt@ucsd.edu
- Ilya Kossovskiy
- Affiliation: Department of Mathematics, Masaryk University, Brno, Czechia; and Department of Mathematics, University of Vienna, Vienna, Austria
- Address at time of publication: Department of Mathematics and Statistics, Masaryk University, Brno, Czech Republic & Vienna University of Technology, Vienna, Austria
- MR Author ID: 818527
- Email: kossovskiyi@math.muni.cz
- Bernhard Lamel
- Affiliation: Department of Mathematics, University of Vienna, Vienna, Austria
- Address at time of publication: Mathematics Program, Texas A &M University at Qatar, Doha, Qatar
- MR Author ID: 685199
- ORCID: 0000-0002-6322-6360
- Email: bernhard.lamel@qatar.tamu.edu
- Received by editor(s): August 28, 2019
- Received by editor(s) in revised form: June 9, 2020
- Published electronically: March 16, 2022
- Additional Notes: The first author was supported in part by the NSF grant DMS-1600701. The second author was supported in part by the Czech Grant Agency (GACR) and the Austrian Science Fund (FWF). The third author was supported in part by the Austrian Science Fund (FWF)
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 4019-4056
- MSC (2020): Primary 32V40; Secondary 32V15
- DOI: https://doi.org/10.1090/tran/8627
- MathSciNet review: 4419052