The classification of multiplicity-free plethysms of Schur functions
HTML articles powered by AMS MathViewer
- by Christine Bessenrodt, Chris Bowman and Rowena Paget PDF
- Trans. Amer. Math. Soc. 375 (2022), 5151-5194 Request permission
Abstract:
We classify and construct all multiplicity-free plethystic products of Schur functions. We also compute many new (infinite) families of plethysm coefficients, with particular emphasis on those near maximal in the dominance ordering and those of small Durfee size.References
- Murat Altunbulak and Alexander Klyachko, The Pauli principle revisited, Comm. Math. Phys. 282 (2008), no. 2, 287–322. MR 2421478, DOI 10.1007/s00220-008-0552-z
- Christine Bessenrodt and Christopher Bowman, Multiplicity-free Kronecker products of characters of the symmetric groups, Adv. Math. 322 (2017), 473–529. MR 3720803, DOI 10.1016/j.aim.2017.10.009
- Peter Bürgisser, Matthias Christandl, and Christian Ikenmeyer, Even partitions in plethysms, J. Algebra 328 (2011), 322–329. MR 2745569, DOI 10.1016/j.jalgebra.2010.10.031
- Peter Bürgisser, Christian Ikenmeyer, and Greta Panova, No occurrence obstructions in geometric complexity theory, 57th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2016, IEEE Computer Soc., Los Alamitos, CA, 2016, pp. 386–395. MR 3631001
- Jonah Blasiak, Ketan D. Mulmuley, and Milind Sohoni, Geometric complexity theory IV: nonstandard quantum group for the Kronecker problem, Mem. Amer. Math. Soc. 235 (2015), no. 1109, x+160. MR 3338303, DOI 10.1090/memo/1109
- Cristina M. Ballantine and Rosa C. Orellana, A combinatorial interpretation for the coefficients in the Kronecker product $s_{(n-p,p)}\ast s_\lambda$, Sém. Lothar. Combin. 54A (2005/07), Art. B54Af, 29. MR 2264933
- Michel Brion, Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Math. 80 (1993), no. 4, 347–371. MR 1243152, DOI 10.1007/BF03026558
- Andrew A. H. Brown, Stephanie van Willigenburg, and Mike Zabrocki, Expressions for Catalan Kronecker products, Pacific J. Math. 248 (2010), no. 1, 31–48. MR 2734163, DOI 10.2140/pjm.2010.248.31
- Luisa Carini, On the multiplicity-free plethysms $p_2[s_\lambda ]$, Ann. Comb. 21 (2017), no. 3, 339–352. MR 3685118, DOI 10.1007/s00026-017-0354-0
- Christophe Carré and Bernard Leclerc, Splitting the square of a Schur function into its symmetric and antisymmetric parts, J. Algebraic Combin. 4 (1995), no. 3, 201–231. MR 1331743, DOI 10.1023/A:1022475927626
- Matthias Christandl and Graeme Mitchison, The spectra of quantum states and the Kronecker coefficients of the symmetric group, Comm. Math. Phys. 261 (2006), no. 3, 789–797. MR 2197548, DOI 10.1007/s00220-005-1435-1
- Laura Colmenarejo, Stability properties of the plethysm: a combinatorial approach, Discrete Math. 340 (2017), no. 8, 2020–2032. MR 3648227, DOI 10.1016/j.disc.2016.10.009
- Luisa Carini and J. B. Remmel, Formulas for the expansion of the plethysms $s_2[s_{(a,b)}]$ and $s_2[s_{(n^k)}]$, Discrete Math. 193 (1998), no. 1-3, 147–177. Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661367, DOI 10.1016/S0012-365X(98)00139-3
- Christophe Carré and Jean-Yves Thibon, Plethysm and vertex operators, Adv. in Appl. Math. 13 (1992), no. 4, 390–403. MR 1190119, DOI 10.1016/0196-8858(92)90018-R
- Melanie de Boeck, Rowena Paget, and Mark Wildon, Plethysms of symmetric functions and highest weight representations, Trans. Amer. Math. Soc. 374 (2021), no. 11, 8013–8043. MR 4328690, DOI 10.1090/tran/8481
- Yoav Dvir, On the Kronecker product of $S_n$ characters, J. Algebra 154 (1993), no. 1, 125–140. MR 1201916, DOI 10.1006/jabr.1993.1008
- Fulvio Gesmundo, Christian Ikenmeyer, and Greta Panova, Geometric complexity theory and matrix powering, Differential Geom. Appl. 55 (2017), 106–127. MR 3724215, DOI 10.1016/j.difgeo.2017.07.001
- Christian Gutschwager, Reduced Kronecker products which are multiplicity free or contain only few components, European J. Combin. 31 (2010), no. 8, 1996–2005. MR 2718277, DOI 10.1016/j.ejc.2010.05.008
- Christian Ikenmeyer and Greta Panova, Rectangular Kronecker coefficients and plethysms in geometric complexity theory, 57th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2016, IEEE Computer Soc., Los Alamitos, CA, 2016, pp. 396–405. MR 3631002
- Christian Ikenmeyer and Greta Panova, Rectangular Kronecker coefficients and plethysms in geometric complexity theory, Adv. Math. 319 (2017), 40–66. MR 3695867, DOI 10.1016/j.aim.2017.08.024
- G. D. James, A characteristic-free approach to the representation theory of ${\mathfrak {S}}_{n}$, J. Algebra 46 (1977), no. 2, 430–450. MR 439924, DOI 10.1016/0021-8693(77)90380-5
- A. Klyachko, Quantum marginal problem and representations of the symmetric group, Preprint arXiv:0409113, 2004.
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015. With contribution by A. V. Zelevinsky and a foreword by Richard Stanley; Reprint of the 2008 paperback edition [ MR1354144]. MR 3443860
- L. Manivel, A note on certain Kronecker coefficients, Proc. Amer. Math. Soc. 138 (2010), no. 1, 1–7. MR 2550164, DOI 10.1090/S0002-9939-09-10086-2
- Igor Pak and Greta Panova, Bounds on certain classes of Kronecker and $q$-binomial coefficients, J. Combin. Theory Ser. A 147 (2017), 1–17. MR 3589885, DOI 10.1016/j.jcta.2016.10.004
- Bruce E. Sagan, The symmetric group, 2nd ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001. Representations, combinatorial algorithms, and symmetric functions. MR 1824028, DOI 10.1007/978-1-4757-6804-6
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- Richard P. Stanley, Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295–319.
- John R. Stembridge, Multiplicity-free products of Schur functions, Ann. Comb. 5 (2001), no. 2, 113–121. MR 1904379, DOI 10.1007/s00026-001-8008-6
- John R. Stembridge, A concise proof of the Littlewood-Richardson rule, Electron. J. Combin. 9 (2002), no. 1, Note 5, 4. MR 1912814
Additional Information
- Christine Bessenrodt
- Affiliation: Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, 30167 Hannover, Germany
- MR Author ID: 36045
- Email: bessen@math.uni-hannover.de
- Chris Bowman
- Affiliation: Department of Mathematics, University of York, Heslington, YO10 5DD, United Kingdom
- MR Author ID: 922280
- Email: Chris.Bowman-Scargill@york.ac.uk
- Rowena Paget
- Affiliation: School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, United Kingdom
- MR Author ID: 760995
- Email: R.E.Paget@kent.ac.uk
- Received by editor(s): April 18, 2020
- Received by editor(s) in revised form: January 4, 2022
- Published electronically: May 4, 2022
- Additional Notes: The second author would like to thank the Alexander von Humboldt Foundation and EPSRC fellowship grant EP/V00090X/1 for financial support and the Leibniz Universität Hannover for their ongoing hospitality
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 5151-5194
- MSC (2020): Primary 05E05, 20C30, 20C15
- DOI: https://doi.org/10.1090/tran/8642
- MathSciNet review: 4439501