Higher stabilization and higher Freudenthal suspension
HTML articles powered by AMS MathViewer
- by Jacobson R. Blomquist and John E. Harper PDF
- Trans. Amer. Math. Soc. 375 (2022), 8193-8240 Request permission
Abstract:
We prove that the stabilization (resp. iterated suspension) functor participates in a derived adjunction comparing pointed spaces with certain (highly homotopy coherent) homotopy coalgebras, in the sense of Blumberg-Riehl, that is a Dwyer-Kan equivalence after restriction to 1-connected spaces, with respect to the associated enrichments. A key ingredient of our proof, of independent interest, is a higher stabilization theorem (resp. higher Freudenthal suspension theorem) for pointed spaces that provides strong estimates for the uniform cartesian-ness of certain cubical diagrams associated to iterating the space level stabilization map (resp. Freudenthal suspension map)—these technical results provide, in particular, new proofs (with strong estimates) of the stabilization and iterated loop-suspension completion results of Carlsson and the subsequent work of Arone-Kankaanrinta, and Bousfield and Hopkins, respectively, for 1-connected spaces; this is the stabilization (resp. Freudenthal suspension) analog of Dundas’ higher Hurewicz theorem.References
- Gregory Arone and Michael Ching, A classification of Taylor towers of functors of spaces and spectra, Adv. Math. 272 (2015), 471–552. MR 3303239, DOI 10.1016/j.aim.2014.12.007
- Greg Arone and Marja Kankaanrinta, A functorial model for iterated Snaith splitting with applications to calculus of functors, Stable and unstable homotopy (Toronto, ON, 1996) Fields Inst. Commun., vol. 19, Amer. Math. Soc., Providence, RI, 1998, pp. 1–30. MR 1622334, DOI 10.1016/s0022-4049(97)00050-9
- M. Artin and B. Mazur, On the van Kampen theorem, Topology 5 (1966), 179–189. MR 192495, DOI 10.1016/0040-9383(66)90018-8
- M. A. Batanin, Coherent categories with respect to monads and coherent prohomotopy theory, Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 4, 279–304 (English, with French summary). MR 1253172
- Mikhail A. Batanin, Homotopy coherent category theory and $A_\infty$-structures in monoidal categories, J. Pure Appl. Algebra 123 (1998), no. 1-3, 67–103. MR 1492896, DOI 10.1016/S0022-4049(96)00084-9
- M. Behrens and C. Rezk, Spectral algebra models of unstable $v_n$-periodic homotopy theory, arXiv:1703.02186[math.AT] (2017).
- M. Bendersky, E. B. Curtis, and H. R. Miller, The unstable Adams spectral sequence for generalized homology, Topology 17 (1978), no. 3, 229–248. MR 508887, DOI 10.1016/0040-9383(78)90028-9
- Martin Bendersky and Robert D. Thompson, The Bousfield-Kan spectral sequence for periodic homology theories, Amer. J. Math. 122 (2000), no. 3, 599–635. MR 1759890, DOI 10.1353/ajm.2000.0015
- Jacobson R. Blomquist and John E. Harper, Integral chains and Bousfield-Kan completion, Homology Homotopy Appl. 21 (2019), no. 2, 29–58. MR 3911945, DOI 10.4310/HHA.2019.v21.n2.a4
- Andrew J. Blumberg and Emily Riehl, Homotopical resolutions associated to deformable adjunctions, Algebr. Geom. Topol. 14 (2014), no. 5, 3021–3048. MR 3276853, DOI 10.2140/agt.2014.14.3021
- A. K. Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987), no. 2, 361–394. MR 882428, DOI 10.2307/2374579
- A. K. Bousfield and E. M. Friedlander, Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 80–130. MR 513569
- A. K. Bousfield and V. K. A. M. Gugenheim, On $\textrm {PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 425956, DOI 10.1090/memo/0179
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology 11 (1972), 79–106. MR 283801, DOI 10.1016/0040-9383(72)90024-9
- Gunnar Carlsson, Equivariant stable homotopy and Sullivan’s conjecture, Invent. Math. 103 (1991), no. 3, 497–525. MR 1091616, DOI 10.1007/BF01239524
- Gunnar Carlsson, Derived completions in stable homotopy theory, J. Pure Appl. Algebra 212 (2008), no. 3, 550–577. MR 2365333, DOI 10.1016/j.jpaa.2007.06.015
- Gunnar Carlsson and R. James Milgram, Stable homotopy and iterated loop spaces, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 505–583. MR 1361898, DOI 10.1016/B978-044481779-2/50014-6
- Michael Ching and John E. Harper, Higher homotopy excision and Blakers-Massey theorems for structured ring spectra, Adv. Math. 298 (2016), 654–692. MR 3505753, DOI 10.1016/j.aim.2016.04.025
- Michael Ching and John E. Harper, Derived Koszul duality and $\mathsf {TQ}$-homology completion of structured ring spectra, Adv. Math. 341 (2019), 118–187. MR 3872846, DOI 10.1016/j.aim.2018.10.033
- L. Cohn, Derived commutator complete algebras and relative Koszul duality for operads, arXiv:1602.01828 [math.AT], 2016.
- E. Dror and W. G. Dwyer, A long homology localization tower, Comment. Math. Helv. 52 (1977), no. 2, 185–210. MR 458417, DOI 10.1007/BF02567364
- D. Dugger, A primer on homotopy colimits, Preprint, 2008, http://pages.uoregon.edu/ddugger/.
- Bjørn Ian Dundas, Relative $K$-theory and topological cyclic homology, Acta Math. 179 (1997), no. 2, 223–242. MR 1607556, DOI 10.1007/BF02392744
- Bjørn Ian Dundas, Thomas G. Goodwillie, and Randy McCarthy, The local structure of algebraic K-theory, Algebra and Applications, vol. 18, Springer-Verlag London, Ltd., London, 2013. MR 3013261
- W. G. Dwyer, Strong convergence of the Eilenberg-Moore spectral sequence, Topology 13 (1974), 255–265. MR 394663, DOI 10.1016/0040-9383(74)90018-4
- William G. Dwyer and Hans-Werner Henn, Homotopy theoretic methods in group cohomology, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2001. MR 1926776, DOI 10.1007/978-3-0348-8356-6
- William Dwyer, Haynes Miller, and Joseph Neisendorfer, Fibrewise completion and unstable Adams spectral sequences, Israel J. Math. 66 (1989), no. 1-3, 160–178. MR 1017160, DOI 10.1007/BF02765891
- David A. Edwards and Harold M. Hastings, Čech theory: its past, present, and future, Rocky Mountain J. Math. 10 (1980), no. 3, 429–468. MR 590209, DOI 10.1216/RMJ-1980-10-3-429
- A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. MR 1417719, DOI 10.1090/surv/047
- John Francis and Dennis Gaitsgory, Chiral Koszul duality, Selecta Math. (N.S.) 18 (2012), no. 1, 27–87. MR 2891861, DOI 10.1007/s00029-011-0065-z
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125, DOI 10.1007/978-3-642-85844-4
- Richard Garner, Understanding the small object argument, Appl. Categ. Structures 17 (2009), no. 3, 247–285. MR 2506256, DOI 10.1007/s10485-008-9137-4
- Paul G. Goerss, Barratt’s desuspension spectral sequence and the Lie ring analyzer, Quart. J. Math. Oxford Ser. (2) 44 (1993), no. 173, 43–85. MR 1206202, DOI 10.1093/qmath/44.1.43
- Paul G. Goerss, Simplicial chains over a field and $p$-local homotopy theory, Math. Z. 220 (1995), no. 4, 523–544. MR 1363853, DOI 10.1007/BF02572629
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612, DOI 10.1007/978-3-0348-8707-6
- Thomas G. Goodwillie, Calculus. II. Analytic functors, $K$-Theory 5 (1991/92), no. 4, 295–332. MR 1162445, DOI 10.1007/BF00535644
- Thomas G. Goodwillie, Calculus. III. Taylor series, Geom. Topol. 7 (2003), 645–711. MR 2026544, DOI 10.2140/gt.2003.7.645
- V. K. A. M. Gugenheim and J. Peter May, On the theory and applications of differential torsion products, Memoirs of the American Mathematical Society, No. 142, American Mathematical Society, Providence, R.I., 1974. MR 0394720
- K. Hess, A general framework for homotopic descent and codescent, arXiv:1001.1556v3 [math.AT], 2010.
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041, DOI 10.1090/surv/099
- M. J. Hopkins, Formulations of cocategory and the iterated suspension, Algebraic homotopy and local algebra (Luminy, 1982) Astérisque, vol. 113, Soc. Math. France, Paris, 1984, pp. 212–226. MR 749060
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- Mark Hovey, Brooke Shipley, and Jeff Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), no. 1, 149–208. MR 1695653, DOI 10.1090/S0894-0347-99-00320-3
- Max Karoubi, Cochaînes quasi-commutatives en topologie algébrique, Pure Appl. Math. Q. 5 (2009), no. 1, 1–68 (French, with English summary). MR 2520454, DOI 10.4310/PAMQ.2009.v5.n1.a1
- J. Klein, R. Schwänzl, and R. M. Vogt, Comultiplication and suspension, Topology Appl. 77 (1997), no. 1, 1–18. MR 1443424, DOI 10.1016/S0166-8641(96)00103-4
- John R. Klein, Moduli of suspension spectra, Trans. Amer. Math. Soc. 357 (2005), no. 2, 489–507. MR 2095620, DOI 10.1090/S0002-9947-04-03474-9
- Igor Kříž, $p$-adic homotopy theory, Topology Appl. 52 (1993), no. 3, 279–308. MR 1243609, DOI 10.1016/0166-8641(93)90108-P
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Jacob Lurie, Higher algebra, 2014, http://www.math.harvard.edu/~lurie/.
- Michael A. Mandell, $E_\infty$ algebras and $p$-adic homotopy theory, Topology 40 (2001), no. 1, 43–94. MR 1791268, DOI 10.1016/S0040-9383(99)00053-1
- Michael A. Mandell, Cochains and homotopy type, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 213–246. MR 2233853, DOI 10.1007/s10240-006-0037-6
- J. P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, Vol. 271, Springer-Verlag, Berlin-New York, 1972. MR 0420610, DOI 10.1007/BFb0067491
- J. Peter May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975), no. 1, 155, xiii+98. MR 370579, DOI 10.1090/memo/0155
- James E. McClure and Jeffrey H. Smith, Cosimplicial objects and little $n$-cubes. I, Amer. J. Math. 126 (2004), no. 5, 1109–1153. MR 2089084, DOI 10.1353/ajm.2004.0038
- Brian A. Munson and Ismar Volić, Cubical homotopy theory, New Mathematical Monographs, vol. 25, Cambridge University Press, Cambridge, 2015. MR 3559153, DOI 10.1017/CBO9781139343329
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Andrei Radulescu-Banu, Cofibrance and completion, ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2716861
- Emily Riehl and Dominic Verity, Homotopy coherent adjunctions and the formal theory of monads, Adv. Math. 286 (2016), 802–888. MR 3415698, DOI 10.1016/j.aim.2015.09.011
- S. Schwede, An untitled book project about symmetric spectra, 2007, 2009, http://www.math.uni-bonn.de/people/schwede/.
- Dev P. Sinha, The topology of spaces of knots: cosimplicial models, Amer. J. Math. 131 (2009), no. 4, 945–980. MR 2543919, DOI 10.1353/ajm.0.0061
- V. A. Smirnov, Homotopy theory of coalgebras, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 6, 1302–1321, 1343 (Russian). MR 816858
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078, DOI 10.1007/BF02684341
Additional Information
- Jacobson R. Blomquist
- Affiliation: Department of Mathematical Sciences, Binghamton University, 4400 Vestal Parkway E, Binghamton, New York 13902
- MR Author ID: 1308159
- Email: blomquist@math.binghamton.edu
- John E. Harper
- Affiliation: Department of Mathematics, The Ohio State University, Newark, 1179 University Dr, Newark, Ohio 43055
- MR Author ID: 880393
- Email: harper.903@math.osu.edu
- Received by editor(s): May 24, 2017
- Received by editor(s) in revised form: September 6, 2020, and June 5, 2022
- Published electronically: September 2, 2022
- Additional Notes: The first author was supported in part by the National Science Foundation grants DMS-1510640 and DMS-1547357
The second author was supported in part by the Simons Foundation: Collaboration Grants for Mathematicians #638247 - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 8193-8240
- MSC (2020): Primary 55P60, 55P99; Secondary 55P40, 55P42, 55P43
- DOI: https://doi.org/10.1090/tran/8759