A Buchsbaum theory for tight closure
HTML articles powered by AMS MathViewer
- by Linquan Ma and Pham Hung Quy PDF
- Trans. Amer. Math. Soc. 375 (2022), 8257-8276 Request permission
Abstract:
A Noetherian local ring $(R,\frak {m})$ is called Buchsbaum if the difference $\ell (R/\mathfrak {q})-e(\mathfrak {q}, R)$, where $\mathfrak {q}$ is an ideal generated by a system of parameters, is a constant independent of $\mathfrak {q}$. In this article, we study the tight closure analog of this condition. We prove that in an unmixed excellent local ring $(R,\frak {m})$ of prime characteristic $p>0$ and dimension at least one, the difference $e(\mathfrak {q}, R)-\ell (R/\mathfrak {q}^*)$ is independent of $\mathfrak {q}$ if and only if the parameter test ideal $\tau _{\mathrm {par}}(R)$ contains $\frak {m}$. We also provide a characterization of this condition via derived category which is analogous to Schenzel’s criterion for Buchsbaum rings.References
- Ian M. Aberbach, Craig Huneke, and Karen E. Smith, A tight closure approach to arithmetic Macaulayfication, Illinois J. Math. 40 (1996), no. 2, 310–329. MR 1398097
- Bhargav Bhatt, Linquan Ma, and Karl Schwede, The dualizing complex of $F$-injective and Du Bois singularities, Math. Z. 288 (2018), no. 3-4, 1143–1155. MR 3778992, DOI 10.1007/s00209-017-1929-5
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Nguyen Tu Cuong, Nguyen Thai Hoa, and Nguyen Thi Hong Loan, On certain length functions associated to a system of parameters in local rings, Vietnam J. Math. 27 (1999), no. 3, 259–272. MR 1811339
- Nguyen Tu Cuong and Nguyen Thi Hong Loan, A characterization for pseudo Buchsbaum modules, Japan. J. Math. (N.S.) 30 (2004), no. 1, 165–181. MR 2070373, DOI 10.4099/math1924.30.165
- Nguyen Tu Cuong and Le Thanh Nhan, Pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules, J. Algebra 267 (2003), no. 1, 156–177. MR 1993472, DOI 10.1016/S0021-8693(03)00225-4
- Rankeya Datta and Takumi Murayama, Permanence properties of F-injectivity, Preprint, arXiv:1906.11399.
- Ofer Gabber, Notes on some $t$-structures, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 711–734. MR 2099084
- Shiro Goto, On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra 85 (1983), no. 2, 490–534. MR 725097, DOI 10.1016/0021-8693(83)90109-6
- Shiro Goto, A note on quasi-Buchsbaum rings, Proc. Amer. Math. Soc. 90 (1984), no. 4, 511–516. MR 733397, DOI 10.1090/S0002-9939-1984-0733397-4
- Shiro Goto and Yukio Nakamura, Multiplicity and tight closures of parameters, J. Algebra 244 (2001), no. 1, 302–311. MR 1856539, DOI 10.1006/jabr.2001.8907
- Shiro Goto and Yukio Nakamura, The bound of the difference between parameter ideals and their tight closures, Tokyo J. Math. 25 (2002), no. 1, 41–48. MR 1908212, DOI 10.3836/tjm/1244208935
- Shiro Goto and Kikumichi Yamagishi, The theory of unconditioned strong $d$-sequences and modules of finite local cohomology, unpublished preprint.
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- Melvin Hochster and Craig Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), no. 1, 53–89. MR 1147957, DOI 10.2307/2946563
- Melvin Hochster and Craig Huneke, $F$-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), no. 1, 1–62. MR 1273534, DOI 10.1090/S0002-9947-1994-1273534-X
- Melvin Hochster and Craig Huneke, Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom. 3 (1994), no. 4, 599–670. MR 1297848
- Melvin Hochster and Craig Huneke, Localization and test exponents for tight closure, Michigan Math. J. 48 (2000), 305–329. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786493, DOI 10.1307/mmj/1030132721
- Craig Huneke, Tight closure, parameter ideals, and geometry, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 187–239. MR 1648666
- Mordechai Katzman, Serena Murru, Juan D. Velez, and Wenliang Zhang, Global parameter test ideals, J. Algebra 486 (2017), 80–97. MR 3666208, DOI 10.1016/j.jalgebra.2017.05.010
- Takesi Kawasaki, On arithmetic Macaulayfication of Noetherian rings, Trans. Amer. Math. Soc. 354 (2002), no. 1, 123–149. MR 1859029, DOI 10.1090/S0002-9947-01-02817-3
- Ernst Kunz, Characterizations of regular local rings of characteristic $p$, Amer. J. Math. 91 (1969), 772–784. MR 252389, DOI 10.2307/2373351
- Ernst Kunz, On Noetherian rings of characteristic $p$, Amer. J. Math. 98 (1976), no. 4, 999–1013. MR 432625, DOI 10.2307/2374038
- Linquan Ma, $F$-injectivity and Buchsbaum singularities, Math. Ann. 362 (2015), no. 1-2, 25–42. MR 3343868, DOI 10.1007/s00208-014-1098-3
- Linquan Ma and Thomas Polstra, F-singularities: a commutative algebra approach, Preprint, available at https://www.math.purdue.edu/~ma326/F-singularitiesBook.pdf.
- Linquan Ma, Pham Hung Quy, and Ilya Smirnov, Colength, multiplicity, and ideal closure operations, Comm. Algebra 48 (2020), no. 4, 1601–1607. MR 4079331, DOI 10.1080/00927872.2019.1691577
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- Thomas Polstra and Pham Hung Quy, Nilpotence of Frobenius actions on local cohomology and Frobenius closure of ideals, J. Algebra 529 (2019), 196–225. MR 3938859, DOI 10.1016/j.jalgebra.2019.03.015
- Pham Hung Quy, Uniform annihilators of systems of parameters, Proc. Amer. Math. Soc. 150 (2022), no. 5, 1937–1947. MR 4392329, DOI 10.1090/proc/15825
- Pham Hung Quy, Tight closure of parameter ideals in local rings $F$-rational on the punctured spectrum, J. Pure Appl. Algebra 222 (2018), no. 5, 1126–1138. MR 3742222, DOI 10.1016/j.jpaa.2017.06.011
- Peter Schenzel, Applications of dualizing complexes to Buchsbaum rings, Adv. in Math. 44 (1982), no. 1, 61–77. MR 654548, DOI 10.1016/0001-8708(82)90065-2
- Peter Schenzel, Ngô Viêt Trung, and Nguyễn Tụ’ Cu’ò’ng, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57–73 (German). MR 517641, DOI 10.1002/mana.19780850106
- R. Y. Sharp and M. A. Hamieh, Lengths of certain generalized fractions, J. Pure Appl. Algebra 38 (1985), no. 2-3, 323–336. MR 814188, DOI 10.1016/0022-4049(85)90020-9
- Rodney Y. Sharp, Tight closure test exponents for certain parameter ideals, Michigan Math. J. 54 (2006), no. 2, 307–317. MR 2252761, DOI 10.1307/mmj/1156345596
- K. E. Smith, Tight closure of parameter ideals, Invent. Math. 115 (1994), no. 1, 41–60. MR 1248078, DOI 10.1007/BF01231753
- Karen E. Smith, $F$-rational rings have rational singularities, Amer. J. Math. 119 (1997), no. 1, 159–180. MR 1428062, DOI 10.1353/ajm.1997.0007
- Jürgen Stückrad, Über die kohomologische Charakterisierung von Buchsbaum-Moduln, Math. Nachr. 95 (1980), 265–272 (German). MR 592900, DOI 10.1002/mana.19800950124
- Jürgen Stückrad and Wolfgang Vogel, Eine Verallgemeinerung der Cohen-Macaulay Ringe und Anwendungen auf ein Problem der Multiplizitätstheorie, J. Math. Kyoto Univ. 13 (1973), 513–528 (German). MR 335504, DOI 10.1215/kjm/1250523322
- Jürgen Stückrad and Wolfgang Vogel, Toward a theory of Buchsbaum singularities, Amer. J. Math. 100 (1978), no. 4, 727–746. MR 509072, DOI 10.2307/2373908
- Jürgen Stückrad and Wolfgang Vogel, Buchsbaum rings and applications, Springer-Verlag, Berlin, 1986. An interaction between algebra, geometry and topology. MR 881220, DOI 10.1007/978-3-662-02500-0
- Ngô Việt Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1–49. MR 846128, DOI 10.1017/s0027763000000416
- Juan D. Vélez, Openness of the F-rational locus and smooth base change, J. Algebra 172 (1995), no. 2, 425–453. MR 1322412, DOI 10.1016/S0021-8693(05)80010-9
Additional Information
- Linquan Ma
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 1050700
- Email: ma326@purdue.edu
- Pham Hung Quy
- Affiliation: Department of Mathematics, FPT University, Hanoi, Vietnam
- MR Author ID: 894036
- Email: quyph@fe.edu.vn
- Received by editor(s): August 18, 2021
- Received by editor(s) in revised form: June 18, 2022
- Published electronically: August 30, 2022
- Additional Notes: The first author was partially supported by NSF Grant DMS #1901672, NSF FRG Grant #1952366, and a fellowship from the Sloan Foundation. The second author was partially supported by Vietnam Academy of Science and Technology under grant number CNXS02.01/22-23
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 375 (2022), 8257-8276
- MSC (2020): Primary 13A35; Secondary 13H10
- DOI: https://doi.org/10.1090/tran/8762