Mathematical analysis of electromagnetic scattering by dielectric nanoparticles with high refractive indices
HTML articles powered by AMS MathViewer
- by Habib Ammari, Bowen Li and Jun Zou;
- Trans. Amer. Math. Soc. 376 (2023), 39-90
- DOI: https://doi.org/10.1090/tran/8641
- Published electronically: October 24, 2022
- HTML | PDF | Request permission
Abstract:
In this work, we are concerned with the mathematical modeling of the electromagnetic (EM) scattering by arbitrarily shaped non-magnetic nanoparticles with high refractive indices. When illuminated by visible light, such particles can exhibit a very strong isotropic magnetic response, resulting from the coupling of the incident wave with the circular displacement currents of the EM fields. The main aim of this work is to mathematically illustrate this phenomenon. We shall first introduce the EM scattering resolvent and the concept of dielectric subwavelength resonances. Then we derive the a priori estimates for the subwavelength resonances and the associated resonant modes. We also show the existence of resonances and obtain their asymptotic expansions in terms of the small particle size and the high contrast parameter. After that, we investigate the enhancement of the scattering amplitude and the cross sections when the resonances occur. In doing so, we develop a novel multipole radiation framework that directly separates the electric and magnetic multipole moments and allows us to clearly see their orders of magnitude and blow-up rates. We prove that at the dielectric subwavelength resonant frequencies, the nanoparticles with high refractive indices behave like the sum of the electric dipole and the resonant magnetic dipole. Some explicit calculations and numerical experiments are also provided to validate our general results and formulas.References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, DC, 1964. For sale by the Superintendent of Documents. MR 167642
- Lars V. Ahlfors, Complex analysis: An introduction of the theory of analytic functions of one complex variable, 2nd ed., McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 188405
- Habib Ammari, Alexander Dabrowski, Brian Fitzpatrick, Pierre Millien, and Mourad Sini, Subwavelength resonant dielectric nanoparticles with high refractive indices, Math. Methods Appl. Sci. 42 (2019), no. 18, 6567–6579. MR 4037920, DOI 10.1002/mma.5760
- Habib Ammari, Youjun Deng, and Pierre Millien, Surface plasmon resonance of nanoparticles and applications in imaging, Arch. Ration. Mech. Anal. 220 (2016), no. 1, 109–153. MR 3458160, DOI 10.1007/s00205-015-0928-0
- Habib Ammari, Brian Fitzpatrick, Hyundae Lee, Sanghyeon Yu, and Hai Zhang, Double-negative acoustic metamaterials, Quart. Appl. Math. 77 (2019), no. 4, 767–791. MR 4009331, DOI 10.1090/qam/1543
- Habib Ammari, Hyeonbae Kang, Hyundae Lee, Mikyoung Lim, and Sanghyeon Yu, Enhancement of near cloaking for the full Maxwell equations, SIAM J. Appl. Math. 73 (2013), no. 6, 2055–2076. MR 3127003, DOI 10.1137/120903610
- Habib Ammari and Abdessatar Khelifi, Electromagnetic scattering by small dielectric inhomogeneities, J. Math. Pures Appl. (9) 82 (2003), no. 7, 749–842 (English, with English and French summaries). MR 2005296, DOI 10.1016/S0021-7824(03)00033-3
- Habib Ammari, Bowen Li, and Jun Zou, Superresolution in recovering embedded electromagnetic sources in high contrast media, SIAM J. Imaging Sci. 13 (2020), no. 3, 1467–1510. MR 4142046, DOI 10.1137/20M1313908
- Habib Ammari and Pierre Millien, Shape and size dependence of dipolar plasmonic resonance of nanoparticles, J. Math. Pures Appl. (9) 129 (2019), 242–265 (English, with English and French summaries). MR 3998796, DOI 10.1016/j.matpur.2018.12.001
- Habib Ammari, Pierre Millien, Matias Ruiz, and Hai Zhang, Mathematical analysis of plasmonic nanoparticles: the scalar case, Arch. Ration. Mech. Anal. 224 (2017), no. 2, 597–658. MR 3614756, DOI 10.1007/s00205-017-1084-5
- Habib Ammari, Matias Ruiz, Sanghyeon Yu, and Hai Zhang, Mathematical analysis of plasmonic resonances for nanoparticles: the full Maxwell equations, J. Differential Equations 261 (2016), no. 6, 3615–3669. MR 3527640, DOI 10.1016/j.jde.2016.05.036
- Habib Ammari and Faouzi Triki, Splitting of resonant and scattering frequencies under shape deformation, J. Differential Equations 202 (2004), no. 2, 231–255. MR 2068440, DOI 10.1016/j.jde.2004.02.017
- Habib Ammari, Michael S. Vogelius, and Darko Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. II. The full Maxwell equations, J. Math. Pures Appl. (9) 80 (2001), no. 8, 769–814. MR 1860816, DOI 10.1016/S0021-7824(01)01217-X
- Habib Ammari and Hai Zhang, Effective medium theory for acoustic waves in bubbly fluids near Minnaert resonant frequency, SIAM J. Math. Anal. 49 (2017), no. 4, 3252–3276. MR 3690650, DOI 10.1137/16M1078574
- C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (1998), no. 9, 823–864 (English, with English and French summaries). MR 1626990, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
- Kazunori Ando and Hyeonbae Kang, Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann-Poincaré operator, J. Math. Anal. Appl. 435 (2016), no. 1, 162–178. MR 3423389, DOI 10.1016/j.jmaa.2015.10.033
- Kazunori Ando, Hyeonbae Kang, and Hongyu Liu, Plasmon resonance with finite frequencies: a validation of the quasi-static approximation for diametrically small inclusions, SIAM J. Appl. Math. 76 (2016), no. 2, 731–749. MR 3479707, DOI 10.1137/15M1025943
- Kazunori Ando, Hyeonbae Kang, Yoshihisa Miyanishi, and Erika Ushikoshi, The first Hadamard variation of Neumann-Poincaré eigenvalues on the sphere, Proc. Amer. Math. Soc. 147 (2019), no. 3, 1073–1080. MR 3896057, DOI 10.1090/proc/14246
- Michael Artin, Algebra, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991. MR 1129886
- D. E. Aspnes and A. Studna, Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev, Phys. Rev. B 27 (1983), no. 2, 985.
- G. Baffou, C. Girard, and R. Quidant, Mapping heat origin in plasmonic structures, Phys. Rev. Lett. 104 (2010), no. 13, 136805.
- H. Baumgärtel, Analytic perturbation theory for matrices and operators, Oper. Theory, (1985) 15.
- M. Sh. Birman and M. Z. Solomyak, $L_2$-theory of the Maxwell operator in arbitrary domains, Uspekhi Mat. Nauk 42 (1987), no. 6(258), 61–76, 247 (Russian). MR 933995
- Max Born and Emil Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, Pergamon Press, New York-London-Paris-Los Angeles, 1959. MR 108202
- Yves Capdeboscq, On the scattered field generated by a ball inhomogeneity of constant index, Asymptot. Anal. 77 (2012), no. 3-4, 197–246. MR 2977333, DOI 10.3233/ASY-2011-1080
- Kirill D. Cherednichenko, Yulia Yu. Ershova, and Alexander V. Kiselev, Effective behaviour of critical-contrast PDEs: micro-resonances, frequency conversion, and time dispersive properties. I, Comm. Math. Phys. 375 (2020), no. 3, 1833–1884. MR 4091510, DOI 10.1007/s00220-020-03696-2
- David Colton and Rainer Kress, Inverse acoustic and electromagnetic scattering theory, 3rd ed., Applied Mathematical Sciences, vol. 93, Springer, New York, 2013. MR 2986407, DOI 10.1007/978-1-4614-4942-3
- David Colton and Rainer Kress, Integral equation methods in scattering theory, Classics in Applied Mathematics, vol. 72, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013. Reprint of the 1983 original [ MR0700400]. MR 3397293, DOI 10.1137/1.9781611973167.ch1
- M. Costabel, E. Darrigrand, and E. H. Koné, Volume and surface integral equations for electromagnetic scattering by a dielectric body, J. Comput. Appl. Math. 234 (2010), no. 6, 1817–1825. MR 2644176, DOI 10.1016/j.cam.2009.08.033
- Martin Costabel, Eric Darrigrand, and Hamdi Sakly, The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body, C. R. Math. Acad. Sci. Paris 350 (2012), no. 3-4, 193–197 (English, with English and French summaries). MR 2891110, DOI 10.1016/j.crma.2012.01.017
- Martin Costabel, Eric Darrigrand, and Hamdi Sakly, Volume integral equations for electromagnetic scattering in two dimensions, Comput. Math. Appl. 70 (2015), no. 8, 2087–2101. MR 3400507, DOI 10.1016/j.camwa.2015.08.026
- Martin Costabel and Frédérique Le Louër, On the Kleinman-Martin integral equation method for electromagnetic scattering by a dielectric body, SIAM J. Appl. Math. 71 (2011), no. 2, 635–656. MR 2795787, DOI 10.1137/090779462
- Semyon Dyatlov and Maciej Zworski, Mathematical theory of scattering resonances, Graduate Studies in Mathematics, vol. 200, American Mathematical Society, Providence, RI, 2019. MR 3969938, DOI 10.1090/gsm/200
- A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles, Phys. Rev. B 94 (20):205434, 2016.
- A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12 (2012), no. 7, 3749–3755.
- Gerald B. Folland, Introduction to partial differential equations, 2nd ed., Princeton University Press, Princeton, NJ, 1995. MR 1357411
- Mark J. Friedman and Joseph E. Pasciak, Spectral properties for the magnetization integral operator, Math. Comp. 43 (1984), no. 168, 447–453. MR 758193, DOI 10.1090/S0025-5718-1984-0758193-1
- A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, Strong magnetic response of submicron silicon particles in the infrared, Opt. Express 19 (2011), no. 6, 4815–4826.
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Israel Gohberg, Seymour Goldberg, and Marinus A. Kaashoek, Classes of linear operators. Vol. I, Operator Theory: Advances and Applications, vol. 49, Birkhäuser Verlag, Basel, 1990. MR 1130394, DOI 10.1007/978-3-0348-7509-7
- I. C. Gohberg and E. I. Sigal, An operator generalization of the logarithmic residue theorem and Rouché’s theorem, Mat. Sb. (N.S.) 84(126) (1971), 607–629 (Russian). MR 313856
- J. Gopalakrishnan, S. Moskow, and F. Santosa, Asymptotic and numerical techniques for resonances of thin photonic structures, SIAM J. Appl. Math. 69 (2008), no. 1, 37–63. MR 2447938, DOI 10.1137/070701388
- John David Jackson, Classical electrodynamics, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1975. MR 436782
- P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine, J. Phys. Chem. B 110 (2006), no. 14, 7238–7248.
- Dmitry Khavinson, Mihai Putinar, and Harold S. Shapiro, Poincaré’s variational problem in potential theory, Arch. Ration. Mech. Anal. 185 (2007), no. 1, 143–184. MR 2308861, DOI 10.1007/s00205-006-0045-1
- A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, All-dielectric optical nanoantennas, Opt. Express 20 (2012) no. 18, 20599–20604.
- Peter Kuchment, Floquet theory for partial differential equations, Operator Theory: Advances and Applications, vol. 60, Birkhäuser Verlag, Basel, 1993. MR 1232660, DOI 10.1007/978-3-0348-8573-7
- A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, Optically resonant dielectric nanostructures, Science 354 (2016), no. 6314, aag2472.
- Peter D. Lax, Functional analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2002. MR 1892228
- Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 217440
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. III, Die Grundlehren der mathematischen Wissenschaften, Band 183, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French by P. Kenneth. MR 350179, DOI 10.1007/978-3-642-65393-3
- Hongyu Liu and Jun Zou, Zeros of the Bessel and spherical Bessel functions and their applications for uniqueness in inverse acoustic obstacle scattering, IMA J. Appl. Math. 72 (2007), no. 6, 817–831. MR 2372090, DOI 10.1093/imamat/hxm013
- Vladimir Maz′ya, Serguei Nazarov, and Boris Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. II, Operator Theory: Advances and Applications, vol. 112, Birkhäuser Verlag, Basel, 2000. Translated from the German by Plamenevskij. MR 1779978
- V. G. Maz′ya, S. A. Nazarov, and B. A. Plamenevskiĭ, Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 2, 347–371 (Russian). MR 740795
- Taoufik Meklachi, Shari Moskow, and John C. Schotland, Asymptotic analysis of resonances of small volume high contrast linear and nonlinear scatterers, J. Math. Phys. 59 (2018), no. 8, 083502, 20. MR 3836560, DOI 10.1063/1.5031032
- Peter Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447, DOI 10.1093/acprof:oso/9780198508885.001.0001
- David E. Muller, A method for solving algebraic equations using an automatic computer, Math. Tables Aids Comput. 10 (1956), 208–215. MR 83822, DOI 10.1090/S0025-5718-1956-0083822-0
- J. Nédélec, Acoustic and electromagnetic equations: integral representations for harmonic problems, Springer Science & Business Media, 2001.
- Eugenia N. Petropoulou, Panayiotis D. Siafarikas, and Ioannis D. Stabolas, On the common zeros of Bessel functions, Proceedings of the Sixth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Rome, 2001), 2003, pp. 387–393. MR 1985709, DOI 10.1016/S0377-0427(02)00641-6
- D. Sarid and W. A. Challener, Modern introduction to surface plasmons: theory, Mathematica modeling, and applications, Cambridge University Press, 2010.
- I. Staude and J. Schilling, Metamaterial-inspired silicon nanophotonics, Nat. Photonics 11 (2017), no. 5, 274.
- M. Stessin, R. Yang, and K. Zhu, Analyticity of a joint spectrum and a multivariable analytic Fredhom theorem, New York J. Math. 17A (2011), 39–44. MR 2782727
- Tatsuo Suwa, Introduction to complex analytic geometry, Singularities in geometry and topology, World Sci. Publ., Hackensack, NJ, 2007, pp. 161–220. MR 2311487, DOI 10.1142/9789812706812_{0}005
- Michael E. Taylor, Partial differential equations II. Qualitative studies of linear equations, 2nd ed., Applied Mathematical Sciences, vol. 116, Springer, New York, 2011. MR 2743652, DOI 10.1007/978-1-4419-7052-7
- M. Taylor, Multidimensional analytic Fredholm theory, 2018, https://mtaylor.web.unc.edu/wp-content/uploads/sites/16915/2018/04/fred.pdf, Online.
- D. Tzarouchis and A. Sihvola, Light scattering by a dielectric sphere: perspectives on the Mie resonances, Appl. Sci. 8 (2018), no. 2, 184.
- Gregory Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572–611. MR 769382, DOI 10.1016/0022-1236(84)90066-1
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
- Maciej Zworski, Mathematical study of scattering resonances, Bull. Math. Sci. 7 (2017), no. 1, 1–85. MR 3625851, DOI 10.1007/s13373-017-0099-4
Bibliographic Information
- Habib Ammari
- Affiliation: Department of Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland
- MR Author ID: 353050
- ORCID: 0000-0001-7278-4877
- Email: habib.ammari@math.ethz.ch
- Bowen Li
- Affiliation: Department of Mathematics, Duke University, Durham, North Carolina 27708
- MR Author ID: 1379050
- Email: bowen.li200@duke.edu
- Jun Zou
- Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
- MR Author ID: 255484
- ORCID: 0000-0002-4809-7724
- Email: zou@math.cuhk.edu.hk
- Received by editor(s): March 23, 2020
- Received by editor(s) in revised form: August 13, 2021
- Published electronically: October 24, 2022
- Additional Notes: The work of the first author was partially supported by the Swiss National Science Foundation (SNSF) grant 200021-172483. The work of the third author was substantially supported by Hong Kong RGC grant (Projects 14306719 and 14306718).
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 39-90
- MSC (2020): Primary 35C20, 46N20, 35P30, 35P25, 35Q60
- DOI: https://doi.org/10.1090/tran/8641
- MathSciNet review: 4510105