Ranked masses in two-parameter Fleming–Viot diffusions
HTML articles powered by AMS MathViewer
- by Noah Forman, Soumik Pal, Douglas Rizzolo and Matthias Winkel;
- Trans. Amer. Math. Soc. 376 (2023), 1089-1111
- DOI: https://doi.org/10.1090/tran/8764
- Published electronically: October 28, 2022
- HTML | PDF
Abstract:
Previous work constructed Fleming–Viot-type measure-valued diffusions (and diffusions on a space of interval partitions of the unit interval $[0,1]$) that are stationary with respect to the Poisson–Dirichlet random measures with parameters $\alpha \in (0,1)$ and $\theta > -\alpha$. In this paper, we complete the proof that these processes resolve a conjecture by Feng and Sun [Probab. Theory Related Fields 148 (2010), pp. 501–525] by showing that the processes of ranked atom sizes (or of ranked interval lengths) of these diffusions are members of a two-parameter family of diffusions introduced by Petrov [Funct. Anal. Appl. 43 (2009), pp. 279–296], extending a model by Ethier and Kurtz [Adv. in Appl. Probab. 13 (1981), pp. 429–452] in the case $\alpha =0$.References
- Filippo Ascolani, Antonio Lijoi, and Matteo Ruggiero, Predictive inference with Fleming-Viot-driven dependent Dirichlet processes, Bayesian Anal. 16 (2021), no. 2, 371–395. MR 4255334, DOI 10.1214/20-ba1206
- Fred Espen Benth, Nils Detering, and Paul Krühner, Abstract polynomial processes, arXiv:2010.02483 [math.PR], 2020.
- Alexei Borodin and Grigori Olshanski, Infinite-dimensional diffusions as limits of random walks on partitions, Probab. Theory Related Fields 144 (2009), no. 1-2, 281–318. MR 2480792, DOI 10.1007/s00440-008-0148-8
- François Caron, Willie Neiswanger, Frank Wood, Arnaud Doucet, and Manuel Davy, Generalized Pólya urn for time-varying Pitman-Yor processes, J. Mach. Learn. Res. 18 (2017), Paper No. 27, 32. MR 3634894
- Cristina Costantini, Pierpaolo De Blasi, Stewart N. Ethier, Matteo Ruggiero, and Dario Spanò, Wright-Fisher construction of the two-parameter Poisson-Dirichlet diffusion, Ann. Appl. Probab. 27 (2017), no. 3, 1923–1950. MR 3678488, DOI 10.1214/16-AAP1252
- Christa Cuchiero, Martin Keller-Ressel, and Josef Teichmann, Polynomial processes and their applications to mathematical finance, Finance Stoch. 16 (2012), no. 4, 711–740. MR 2972239, DOI 10.1007/s00780-012-0188-x
- Christa Cuchiero, Martin Larsson, and Sara Svaluto-Ferro, Probability measure-valued polynomial diffusions, Electron. J. Probab. 24 (2019), Paper No. 30, 32. MR 3933209, DOI 10.1214/19-EJP290
- Christa Cuchiero and Sara Svaluto-Ferro, Infinite-dimensional polynomial processes, Finance Stoch. 25 (2021), no. 2, 383–426. MR 4234909, DOI 10.1007/s00780-021-00450-x
- Ernst Eberlein and Jan Kallsen, Mathematical finance, Springer Finance, Springer, Cham, [2019] ©2019. MR 3971545, DOI 10.1007/978-3-030-26106-1
- S. N. Ethier and Thomas G. Kurtz, The infinitely-many-neutral-alleles diffusion model, Adv. in Appl. Probab. 13 (1981), no. 3, 429–452. MR 615945, DOI 10.2307/1426779
- S. N. Ethier, A property of Petrov’s diffusion, Electron. Commun. Probab. 19 (2014), no. 65, 4. MR 3262071, DOI 10.1214/ECP.v19-3684
- Stewart N. Ethier and Thomas G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. Characterization and convergence. MR 838085, DOI 10.1002/9780470316658
- Shui Feng and Wei Sun, Some diffusion processes associated with two parameter Poisson-Dirichlet distribution and Dirichlet process, Probab. Theory Related Fields 148 (2010), no. 3-4, 501–525. MR 2678897, DOI 10.1007/s00440-009-0238-2
- Shui Feng, Wei Sun, Feng-Yu Wang, and Fang Xu, Functional inequalities for the two-parameter extension of the infinitely-many-neutral-alleles diffusion, J. Funct. Anal. 260 (2011), no. 2, 399–413. MR 2737405, DOI 10.1016/j.jfa.2010.10.005
- Wendell H. Fleming and Michel Viot, Some measure-valued Markov processes in population genetics theory, Indiana Univ. Math. J. 28 (1979), no. 5, 817–843. MR 542340, DOI 10.1512/iumj.1979.28.28058
- Noah Forman, Soumik Pal, Douglas Rizzolo, and Matthias Winkel, Diffusions on a space of interval partitions: construction from marked Lévy processes, Electron. J. Probab. 25 (2020), Paper No. 133, 46. MR 4169174, DOI 10.1214/20-ejp521
- Noah Forman, Soumik Pal, Douglas Rizzolo, and Matthias Winkel, Diffusions on a space of interval partitions: Poisson-Dirichlet stationary distributions, Ann. Probab. 49 (2021), no. 2, 793–831. MR 4255131, DOI 10.1214/20-aop1460
- Noah Forman, Douglas Rizzolo, Quan Shi, and Matthias Winkel, Diffusions on a space of interval partitions: the two-parameter model, arXiv:2008.02823 [math.PR], 2020.
- Noah Forman, Douglas Rizzolo, Quan Shi, and Matthias Winkel, A two-parameter family of measure-valued diffusions with Poisson-Dirichlet stationary distributions, Ann. Appl. Probab. 32 (2022), no. 3, 2211–2253. MR 4430012, DOI 10.1214/21-aap1732
- Alexander Gnedin and Jim Pitman, Regenerative composition structures, Ann. Probab. 33 (2005), no. 2, 445–479. MR 2122798, DOI 10.1214/009117904000000801
- Anja Göing-Jaeschke and Marc Yor, A survey and some generalizations of Bessel processes, Bernoulli 9 (2003), no. 2, 313–349. MR 1997032, DOI 10.3150/bj/1068128980
- Robert C Griffiths, Matteo Ruggiero, Dario Spanò, and Youzhou Zhou, Dual process in the two-parameter Poisson–Dirichlet diffusion, arXiv:2102.08520 [math.PR], 2021.
- Lancelot F. James, Antonio Lijoi, and Igor Prünster, Distributions of linear functionals of two parameter Poisson-Dirichlet random measures, Ann. Appl. Probab. 18 (2008), no. 2, 521–551. MR 2398765, DOI 10.1214/07-AAP462
- Olav Kallenberg, Random measures, theory and applications, Probability Theory and Stochastic Modelling, vol. 77, Springer, Cham, 2017. MR 3642325, DOI 10.1007/978-3-319-41598-7
- Motoo Kimura, Diffusion models in population genetics, J. Appl. Probability 1 (1964), 177–232. MR 172727, DOI 10.2307/3211856
- Ludger Overbeck, Michael Röckner, and Byron Schmuland, An analytic approach to Fleming-Viot processes with interactive selection, Ann. Probab. 23 (1995), no. 1, 1–36. MR 1330758
- Soumik Pal, Analysis of market weights under volatility-stabilized market models, Ann. Appl. Probab. 21 (2011), no. 3, 1180–1213. MR 2830616, DOI 10.1214/10-AAP725
- Soumik Pal, Wright-Fisher diffusion with negative mutation rates, Ann. Probab. 41 (2013), no. 2, 503–526. MR 3077518, DOI 10.1214/11-AOP704
- L. A. Petrov, A two-parameter family of infinite-dimensional diffusions on the Kingman simplex, Funktsional. Anal. i Prilozhen. 43 (2009), no. 4, 45–66 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 43 (2009), no. 4, 279–296. MR 2596654, DOI 10.1007/s10688-009-0036-8
- J. Pitman, Combinatorial stochastic processes, Lecture Notes in Mathematics, vol. 1875, Springer-Verlag, Berlin, 2006. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24, 2002; With a foreword by Jean Picard. MR 2245368
- Jim Pitman, Poisson-Kingman partitions, Statistics and science: a Festschrift for Terry Speed, IMS Lecture Notes Monogr. Ser., vol. 40, Inst. Math. Statist., Beachwood, OH, 2003, pp. 1–34. MR 2004330, DOI 10.1214/lnms/1215091133
- Jim Pitman and Matthias Winkel, Regenerative tree growth: binary self-similar continuum random trees and Poisson-Dirichlet compositions, Ann. Probab. 37 (2009), no. 5, 1999–2041. MR 2561439, DOI 10.1214/08-AOP445
- Jim Pitman and Matthias Winkel, Squared Bessel processes of positive and negative dimension embedded in Brownian local times, Electron. Commun. Probab. 23 (2018), 13 pp.
- Jim Pitman and Marc Yor, The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator, Ann. Probab. 25 (1997), no. 2, 855–900. MR 1434129, DOI 10.1214/aop/1024404422
- Fernando A. Quintana, Peter Müller, Alejandro Jara, and Steven N. MacEachern, The dependent Dirichlet process and related models, Statist. Sci. 37 (2022), no. 1, 24–41. MR 4371095, DOI 10.1214/20-sts819
- Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357, DOI 10.1007/978-3-662-06400-9
- Kelvin Rivera-Lopez and Douglas Rizzolo, Diffusive limits of two-parameter ordered Chinese Restaurant Process up-down chains, to appear Ann. Inst. Henri Poincaré. Probab. Stat.
- L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales. Vol. 1, 2nd ed., Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Ltd., Chichester, 1994. Foundations. MR 1331599
- Matteo Ruggiero, Species dynamics in the two-parameter Poisson-Dirichlet diffusion model, J. Appl. Probab. 51 (2014), no. 1, 174–190. MR 3189450, DOI 10.1239/jap/1395771422
- Matteo Ruggiero and Stephen G. Walker, Countable representation for infinite dimensional diffusions derived from the two-parameter Poisson-Dirichlet process, Electron. Commun. Probab. 14 (2009), 501–517. MR 2564485, DOI 10.1214/ECP.v14-1508
- Matteo Ruggiero, Stephen G. Walker, and Stefano Favaro, Alpha-diversity processes and normalized inverse-Gaussian diffusions, Ann. Appl. Probab. 23 (2013), no. 1, 386–425. MR 3059239, DOI 10.1214/12-AAP846
- Quan Shi and Matthias Winkel, Two-sided immigration, emigration and symmetry properties of self-similar interval partition evolutions, arXiv preprint, arXiv:2011.13378, 2020.
- Quan Shi and Matthia Winkel, Up-down ordered Chinese restaurant processes with two-sided immigration, emigration and diffusion limits, arXiv preprint, arXiv:2012.15758, 2020.
- Tokuzo Shiga, A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes, J. Math. Kyoto Univ. 30 (1990), no. 2, 245–279. MR 1068791, DOI 10.1215/kjm/1250520071
- Tokuzo Shiga and Shinzo Watanabe, Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973), 37–46. MR 368192, DOI 10.1007/BF00736006
- Erik Sudderth and Michael Jordan, Shared segmentation of natural scenes using dependent Pitman–Yor processes, Advances in Neural Information Processing Systems (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.), vol. 21, Curran Associates, Inc., 2008.
- Yee Whye Teh, A hierarchical Bayesian language model based on Pitman–Yor processes, Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, 2006, pp. 985–992.
- J. Warren and M. Yor, The Brownian burglar: conditioning Brownian motion by its local time process, Séminaire de Probabilités, XXXII, Lecture Notes in Math., vol. 1686, Springer, Berlin, 1998, pp. 328–342. MR 1655303, DOI 10.1007/BFb0101767
Bibliographic Information
- Noah Forman
- Affiliation: Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- MR Author ID: 1126690
- ORCID: 0000-0002-3087-3537
- Email: noah.forman@gmail.com
- Soumik Pal
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- MR Author ID: 837173
- Email: soumikpal@gmail.com
- Douglas Rizzolo
- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- MR Author ID: 814330
- Email: drizzolo@udel.com
- Matthias Winkel
- Affiliation: Department of Statistics, University of Oxford, 24–29 St Giles’, Oxford OX1 3LB, United Kingdom
- MR Author ID: 678327
- ORCID: 0000-0003-0593-8682
- Email: winkel@stats.ox.ac.uk
- Received by editor(s): February 26, 2021
- Received by editor(s) in revised form: March 24, 2022
- Published electronically: October 28, 2022
- Additional Notes: The first author was supported by NSF grant DMS-1444084, UW-RRF grant A112251, and NSERC RGPIN-2020-06907. The second author was supported by NSF grants DMS-1308340 and DMS-1612483. The third author was supported by NSF grants DMS-1204840 and DMS-1855568. The fourth author was supported by EPSRC grant EP/K029797/1.
- © Copyright 2022 by the authors
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1089-1111
- MSC (2020): Primary 60J25, 60J60; Secondary 60G55, 60J35, 60J80
- DOI: https://doi.org/10.1090/tran/8764
- MathSciNet review: 4531670