When does a perturbation of the equations preserve the normal cone?
HTML articles powered by AMS MathViewer
- by Pham Hung Quy and Ngo Viet Trung;
- Trans. Amer. Math. Soc. 376 (2023), 4957-4978
- DOI: https://doi.org/10.1090/tran/8897
- Published electronically: April 12, 2023
- HTML | PDF | Request permission
Abstract:
Let $(R,\frak {m})$ be a local ring and $I, J$ two arbitrary ideals of $R$. Let $gr_J(R/I)$ denote the associated graded ring of $R/I$ with respect to $J$, which corresponds to the normal cone in algebraic geometry. With regards to the finite determinacy of singularity with respect to the Jacobian ideal we study the problem for which ideal $I = (f_1,\dots ,f_r)$ does there exist a number $N$ such that if $f_i’ \equiv f_i \mod J^N$, $i = 1,\dots ,r$, and $I’ = (f_1’,\dots ,f_r’)$, then $gr_J(R/I) \cong gr_J(R/I’)$. This problem arises from a recent result of Ma, Quy and Smirnov in the case $J$ is an $\frak {m}$-primary ideal, which solves a long standing conjecture of Srinivas and Trivedi on the invariance of Hilbert functions under small perturbations. Their approach involves Hilbert functions and cannot be used to study the above general problem. Our main result shows that such a number $N$ exists if $f_1,\dots ,f_r$ is locally a regular sequence outside the locus of $J$. It has interesting applications to a range of related problems.References
- R. Achilles and M. Manaresi, Multiplicities of a bigraded ring and intersection theory, Math. Ann. 309 (1997), no. 4, 573–591. MR 1483824, DOI 10.1007/s002080050128
- Janusz Adamus and Hadi Seyedinejad, Finite determinacy and stability of flatness of analytic mappings, Canad. J. Math. 69 (2017), no. 2, 241–257. MR 3612085, DOI 10.4153/CJM-2016-008-0
- J. Adamus and A. Patel, On finite determinacy of complete intersection singularities, Preprint, arXiv:1705.08985.
- Janusz Adamus and Aftab Patel, Equisingular algebraic approximation of real and complex analytic germs, J. Singul. 20 (2020), 289–310. MR 4187048, DOI 10.5427/jsing.2020.20n
- V. I. Arnol′d, Normal forms of functions in the neighborhood of degenerate critical points, Uspehi Mat. Nauk 29 (1974), no. 2(176), 11–49 (Russian). MR 516034
- J. Asadollahi and P. Schenzel, Some results on associated primes of local cohomology modules, Japan. J. Math. (N.S.) 29 (2003), no. 2, 285–296. MR 2035541, DOI 10.4099/math1924.29.285
- Thomas Becker, Standard bases and some computations in rings of power series, J. Symbolic Comput. 10 (1990), no. 2, 165–178. MR 1080671, DOI 10.1016/S0747-7171(08)80039-9
- Yousra Boubakri, Gert-Martin Greuel, and Thomas Markwig, Normal forms of hypersurface singularities in positive characteristic, Mosc. Math. J. 11 (2011), no. 4, 657–683, 821 (English, with English and Russian summaries). MR 2918293, DOI 10.17323/1609-4514-2011-11-4-657-683
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Luca Chiantini, On form ideals and Artin-Rees condition, Manuscripta Math. 36 (1981/82), no. 2, 125–145. MR 641970, DOI 10.1007/BF01170130
- Nguyen Tu Cuong and Doan Trung Cuong, Local cohomology annihilators and Macaulayfication, Acta Math. Vietnam. 42 (2017), no. 1, 37–60. MR 3595445, DOI 10.1007/s40306-016-0185-9
- Steven Dale Cutkosky and Hema Srinivasan, An intrinsic criterion for isomorphism of singularities, Amer. J. Math. 115 (1993), no. 4, 789–821. MR 1231147, DOI 10.2307/2375013
- Steven Dale Cutkosky and Hema Srinivasan, Equivalence and finite determinancy of mappings, J. Algebra 188 (1997), no. 1, 16–57. MR 1432345, DOI 10.1006/jabr.1996.6822
- Hailong Dao and Pham Hung Quy, On the associated primes of local cohomology, Nagoya Math. J. 237 (2020), 1–9. MR 4059782, DOI 10.1017/nmj.2017.44
- Edward D. Davis, Ideals of the principal class, $R$-sequences and a certain monoidal transformation, Pacific J. Math. 20 (1967), 197–205. MR 206035, DOI 10.2140/pjm.1967.20.197
- Luisa Rodrigues Doering, Tor Gunston, and Wolmer V. Vasconcelos, Cohomological degrees and Hilbert functions of graded modules, Amer. J. Math. 120 (1998), no. 3, 493–504. MR 1623400, DOI 10.1353/ajm.1998.0019
- Luís Duarte, Betti numbers under small perturbations, J. Algebra 594 (2022), 138–153. MR 4352596, DOI 10.1016/j.jalgebra.2021.12.004
- David Eisenbud, Adic approximation of complexes, and multiplicities, Nagoya Math. J. 54 (1974), 61–67. MR 345952, DOI 10.1017/S0027763000024594
- H. Flenner, L. O’Carroll, and W. Vogel, Joins and intersections, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR 1724388, DOI 10.1007/978-3-662-03817-8
- Terence Gaffney and Robert Gassler, Segre numbers and hypersurface singularities, J. Algebraic Geom. 8 (1999), no. 4, 695–736. MR 1703611
- Gert-Martin Greuel and Thuy Huong Pham, Finite determinacy of matrices and ideals, J. Algebra 530 (2019), 195–214. MR 3942718, DOI 10.1016/j.jalgebra.2019.04.013
- Craig Huneke, The theory of $d$-sequences and powers of ideals, Adv. in Math. 46 (1982), no. 3, 249–279. MR 683201, DOI 10.1016/0001-8708(82)90045-7
- Craig Huneke and Vijaylaxmi Trivedi, The height of ideals and regular sequences, Manuscripta Math. 93 (1997), no. 2, 137–142. MR 1464361, DOI 10.1007/BF02677462
- Takesi Kawasaki, On Macaulayfication of Noetherian schemes, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2517–2552. MR 1707481, DOI 10.1090/S0002-9947-00-02603-9
- Cao Huy Linh, Upper bound for the Castelnuovo-Mumford regularity of associated graded modules, Comm. Algebra 33 (2005), no. 6, 1817–1831. MR 2150846, DOI 10.1081/AGB-200063340
- Linquan Ma, Pham Hung Quy, and Ilya Smirnov, Filter regular sequence under small perturbations, Math. Ann. 378 (2020), no. 1-2, 243–254. MR 4150917, DOI 10.1007/s00208-020-02014-4
- Konrad Möhring and Duco van Straten, A criterion for the equivalence of formal singularities, Amer. J. Math. 124 (2002), no. 6, 1319–1327. MR 1939788, DOI 10.1353/ajm.2002.0032
- Uwe Nagel and Tim Römer, Extended degree functions and monomial modules, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3571–3589. MR 2218989, DOI 10.1090/S0002-9947-05-03848-1
- Uwe Nagel and Peter Schenzel, Cohomological annihilators and Castelnuovo-Mumford regularity, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 307–328. MR 1266188, DOI 10.1090/conm/159/01516
- Akira Ooishi, Genera and arithmetic genera of commutative rings, Hiroshima Math. J. 17 (1987), no. 1, 47–66. MR 886981
- Francesc Planas-Vilanova, On the module of effective relations of a standard algebra, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 2, 215–229. MR 1631099, DOI 10.1017/S030500419800262X
- Francesc Planas-Vilanova, The strong uniform Artin-Rees property in codimension one, J. Reine Angew. Math. 527 (2000), 185–201. MR 1794022, DOI 10.1515/crll.2000.081
- Claudia Polini, Ngo Viet Trung, Bernd Ulrich, and Javid Validashti, Multiplicity sequence and integral dependence, Math. Ann. 378 (2020), no. 3-4, 951–969. MR 4163518, DOI 10.1007/s00208-020-02059-5
- Pham Hung Quy and Van Duc Trung, Small perturbations in generalized Cohen-Macaulay local rings, J. Algebra 587 (2021), 555–568. MR 4305920, DOI 10.1016/j.jalgebra.2021.08.007
- Maria Evelina Rossi, Ngô Viêt Trung, and Giuseppe Valla, Castelnuovo-Mumford regularity and extended degree, Trans. Amer. Math. Soc. 355 (2003), no. 5, 1773–1786. MR 1953524, DOI 10.1090/S0002-9947-03-03185-4
- Peter Schenzel, Dualizing complexes and systems of parameters, J. Algebra 58 (1979), no. 2, 495–501. MR 540653, DOI 10.1016/0021-8693(79)90175-3
- Peter Schenzel, Ngô Viêt Trung, and Nguyễn Tụ’ Cu’ò’ng, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57–73 (German). MR 517641, DOI 10.1002/mana.19780850106
- V. Srinivas and Vijaylaxmi Trivedi, The invariance of Hilbert functions of quotients under small perturbations, J. Algebra 186 (1996), no. 1, 1–19. MR 1418035, DOI 10.1006/S0021-8693(96)90000-9
- V. Srinivas and Vijaylaxmi Trivedi, A finiteness theorem for the Hilbert functions of complete intersection local rings, Math. Z. 225 (1997), no. 4, 543–558. MR 1466401, DOI 10.1007/PL00004322
- Vijaylaxmi Trivedi, Hilbert functions, Castelnuovo-Mumford regularity and uniform Artin-Rees numbers, Manuscripta Math. 94 (1997), no. 4, 485–499. MR 1484640, DOI 10.1007/BF02677868
- Ngô Viêt Trung, Absolutely superficial sequences, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 1, 35–47. MR 684272, DOI 10.1017/S0305004100060308
- Ngô Việt Trung, Castelnuovo-Mumford regularity and related invariants, Commutative algebra and combinatorics, Ramanujan Math. Soc. Lect. Notes Ser., vol. 4, Ramanujan Math. Soc., Mysore, 2007, pp. 157–180. MR 2394673
- Ngô Việt Trung and Shin Ikeda, When is the Rees algebra Cohen-Macaulay?, Comm. Algebra 17 (1989), no. 12, 2893–2922. MR 1030601, DOI 10.1080/00927878908823885
- Ngô Việt Trung, Duong Quôc Viêt, and Santiago Zarzuela, When is the Rees algebra Gorenstein?, J. Algebra 175 (1995), no. 1, 137–156. MR 1338971, DOI 10.1006/jabr.1995.1179
- Wolmer V. Vasconcelos, The homological degree of a module, Trans. Amer. Math. Soc. 350 (1998), no. 3, 1167–1179. MR 1458335, DOI 10.1090/S0002-9947-98-02127-8
Bibliographic Information
- Pham Hung Quy
- Affiliation: Department of Mathematics, FPT University, Hanoi, Vietnam
- MR Author ID: 894036
- ORCID: 0000-0002-3317-0191
- Email: quyph@fe.edu.vn
- Ngo Viet Trung
- Affiliation: International Centre for Research and Postgraduate Training, Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
- MR Author ID: 207806
- Email: nvtrung@math.ac.vn
- Received by editor(s): February 18, 2022
- Received by editor(s) in revised form: December 28, 2022
- Published electronically: April 12, 2023
- Additional Notes: This work was supported by grant NCXS02.01/22-23 of Vietnam Academy of Science and Technology.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 4957-4978
- MSC (2020): Primary 13A30, 13D10; Secondary 13H15, 13P10, 14B12
- DOI: https://doi.org/10.1090/tran/8897
- MathSciNet review: 4608436