Optimal Hardy weights on the Euclidean lattice
HTML articles powered by AMS MathViewer
- by Matthias Keller and Marius Lemm;
- Trans. Amer. Math. Soc. 376 (2023), 6033-6062
- DOI: https://doi.org/10.1090/tran/8939
- Published electronically: June 22, 2023
- HTML | PDF | Request permission
Abstract:
We investigate the large-distance asymptotics of optimal Hardy weights on $\mathbb Z^d$, $d\geq 3$, via the super solution construction. For the free discrete Laplacian, the Hardy weight asymptotic is the familiar $\frac {(d-2)^2}{4}|x|^{-2}$ as $|x|\to \infty$. We prove that the inverse-square behavior of the optimal Hardy weight is robust for general elliptic coefficients on $\mathbb Z^d$: (1) averages over large sectors have inverse-square scaling, (2) for ergodic coefficients, there is a pointwise inverse-square upper bound on moments, and (3) for i.i.d. coefficients, there is a matching inverse-square lower bound on moments. The results imply $|x|^{-4}$-scaling for Rellich weights on $\mathbb Z^d$. Analogous results are also new in the continuum setting. The proofs leverage Green’s function estimates rooted in homogenization theory.References
- Wolfgang Arendt, Gisèle Ruiz Goldstein, and Jerome A. Goldstein, Outgrowths of Hardy’s inequality, Recent advances in differential equations and mathematical physics, Contemp. Math., vol. 412, Amer. Math. Soc., Providence, RI, 2006, pp. 51–68. MR 2259099, DOI 10.1090/conm/412/07766
- Scott Armstrong, Alexandre Bordas, and Jean-Christophe Mourrat, Quantitative stochastic homogenization and regularity theory of parabolic equations, Anal. PDE 11 (2018), no. 8, 1945–2014. MR 3812862, DOI 10.2140/apde.2018.11.1945
- Scott Armstrong, Tuomo Kuusi, and Jean-Christophe Mourrat, The additive structure of elliptic homogenization, Invent. Math. 208 (2017), no. 3, 999–1154. MR 3648977, DOI 10.1007/s00222-016-0702-4
- Scott Armstrong, Tuomo Kuusi, and Jean-Christophe Mourrat, Quantitative stochastic homogenization and large-scale regularity, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 352, Springer, Cham, 2019. MR 3932093, DOI 10.1007/978-3-030-15545-2
- Scott N. Armstrong and Charles K. Smart, Quantitative stochastic homogenization of convex integral functionals, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 2, 423–481 (English, with English and French summaries). MR 3481355, DOI 10.24033/asens.2287
- D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967), 890–896. MR 217444, DOI 10.1090/S0002-9904-1967-11830-5
- D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 607–694. MR 435594
- Peter Bella and Arianna Giunti, Green’s function for elliptic systems: moment bounds, Netw. Heterog. Media 13 (2018), no. 1, 155–176. MR 3811558, DOI 10.3934/nhm.2018007
- Peter Bella, Arianna Giunti, and Felix Otto, Quantitative stochastic homogenization: local control of homogenization error through corrector, Mathematics and materials, IAS/Park City Math. Ser., vol. 23, Amer. Math. Soc., Providence, RI, 2017, pp. 301–327. MR 3700018
- Peter Bella, Arianna Giunti, and Felix Otto, Effective multipoles in random media, Comm. Partial Differential Equations 45 (2020), no. 6, 561–640. MR 4106999, DOI 10.1080/03605302.2020.1743309
- Elvise Berchio, Debdip Ganguly, Gabriele Grillo, and Yehuda Pinchover, An optimal improvement for the Hardy inequality on the hyperbolic space and related manifolds, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 4, 1699–1736. MR 4122432, DOI 10.1017/prm.2018.139
- J. Bourgain, On a homogenization problem, J. Stat. Phys. 172 (2018), no. 2, 314–320. MR 3824939, DOI 10.1007/s10955-018-1981-5
- E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245–287 (English, with French summary). MR 898496
- Joseph G. Conlon and Ali Naddaf, Green’s functions for elliptic and parabolic equations with random coefficients, New York J. Math. 6 (2000), 153–225. MR 1781430
- Paul Dario and Chenlin Gu, Quantitative homogenization of the parabolic and elliptic Green’s functions on percolation clusters, Ann. Probab. 49 (2021), no. 2, 556–636. MR 4255127, DOI 10.1214/20-aop1456
- Ennio De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25–43 (Italian). MR 93649
- T. Delmotte and J.-D. Deuschel, On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to $\nabla \phi$ interface model, Probab. Theory Related Fields 133 (2005), no. 3, 358–390. MR 2198017, DOI 10.1007/s00440-005-0430-y
- Baptiste Devyver, Martin Fraas, and Yehuda Pinchover, Optimal Hardy weight for second-order elliptic operator: an answer to a problem of Agmon, J. Funct. Anal. 266 (2014), no. 7, 4422–4489. MR 3170212, DOI 10.1016/j.jfa.2014.01.017
- Baptiste Devyver and Yehuda Pinchover, Optimal $L^p$ Hardy-type inequalities, Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016), no. 1, 93–118. MR 3436428, DOI 10.1016/j.anihpc.2014.08.005
- Baptiste Devyver, Yehuda Pinchover, and Georgios Psaradakis, Optimal Hardy inequalities in cones, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 1, 89–124. MR 3603527, DOI 10.1017/S0308210516000056
- Mitia Duerinckx, Antoine Gloria, and Marius Lemm, A remark on a surprising result by Bourgain in homogenization, Comm. Partial Differential Equations 44 (2019), no. 12, 1345–1357. MR 4000840, DOI 10.1080/03605302.2019.1638934
- Mitia Duerinckx, Antoine Gloria, and Felix Otto, The structure of fluctuations in stochastic homogenization, Comm. Math. Phys. 377 (2020), no. 1, 259–306. MR 4107930, DOI 10.1007/s00220-020-03722-3
- P. J. Fitzsimmons, Hardy’s inequality for Dirichlet forms, J. Math. Anal. Appl. 250 (2000), no. 2, 548–560. MR 1786080, DOI 10.1006/jmaa.2000.6985
- R. L. Frank, Sobolev inequalities and uncertainty principles in mathematical physics, part I, Lecture Notes, 2011, http://www.math.caltech.edu/~rlfrank/sobweb1.pdf.
- Rupert L. Frank and Robert Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), no. 12, 3407–3430. MR 2469027, DOI 10.1016/j.jfa.2008.05.015
- Rupert L. Frank, Barry Simon, and Timo Weidl, Eigenvalue bounds for perturbations of Schrödinger operators and Jacobi matrices with regular ground states, Comm. Math. Phys. 282 (2008), no. 1, 199–208. MR 2415477, DOI 10.1007/s00220-008-0453-1
- Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, Second revised and extended edition, De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR 2778606
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- A. Gloria, S. Neukamm, and F. Otto, Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, Invent. Math. 199 (2015), no. 2, 455–515. MR 3302119, DOI 10.1007/s00222-014-0518-z
- Antoine Gloria and Felix Otto, An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab. 39 (2011), no. 3, 779–856. MR 2789576, DOI 10.1214/10-AOP571
- S. Golénia, Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians, J. Funct. Anal., 266(5):2662–2688, 2014.
- Yu Gu and Jean-Christophe Mourrat, Scaling limit of fluctuations in stochastic homogenization, Multiscale Model. Simul. 14 (2016), no. 1, 452–481. MR 3477309, DOI 10.1137/15M1010683
- Sebastian Haeseler and Matthias Keller, Generalized solutions and spectrum for Dirichlet forms on graphs, Random walks, boundaries and spectra, Progr. Probab., vol. 64, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 181–199. MR 3051699, DOI 10.1007/978-3-0346-0244-0_{1}0
- Sebastian Haeseler, Matthias Keller, Daniel Lenz, and Radosław Wojciechowski, Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions, J. Spectr. Theory 2 (2012), no. 4, 397–432. MR 2947294, DOI 10.4171/jst/35
- Lev Kapitanski and Ari Laptev, On continuous and discrete Hardy inequalities, J. Spectr. Theory 6 (2016), no. 4, 837–858. MR 3584186, DOI 10.4171/JST/144
- M. Keller and M. Lemm, Asymptotic expansion of the annealed Green’s function and its derivatives, Preprint, arXiv:2107.11583 (2021).
- Matthias Keller, Daniel Lenz, Marcel Schmidt, and Radosław K. Wojciechowski, Note on uniformly transient graphs, Rev. Mat. Iberoam. 33 (2017), no. 3, 831–860. MR 3713033, DOI 10.4171/RMI/957
- Matthias Keller, Yehuda Pinchover, and Felix Pogorzelski, Optimal Hardy inequalities for Schrödinger operators on graphs, Comm. Math. Phys. 358 (2018), no. 2, 767–790. MR 3774437, DOI 10.1007/s00220-018-3107-y
- Matthias Keller, Yehuda Pinchover, and Felix Pogorzelski, An improved discrete Hardy inequality, Amer. Math. Monthly 125 (2018), no. 4, 347–350. MR 3779222, DOI 10.1080/00029890.2018.1420995
- Matthias Keller, Yehuda Pinchover, and Felix Pogorzelski, From Hardy to Rellich inequalities on graphs, Proc. Lond. Math. Soc. (3) 122 (2021), no. 3, 458–477. MR 4230061, DOI 10.1112/plms.12376
- Jongchon Kim and Marius Lemm, On the averaged Green’s function of an elliptic equation with random coefficients, Arch. Ration. Mech. Anal. 234 (2019), no. 3, 1121–1166. MR 4011694, DOI 10.1007/s00205-019-01409-1
- Hynek Kovařík and Yehuda Pinchover, On minimal decay at infinity of Hardy-weights, Commun. Contemp. Math. 22 (2020), no. 5, 1950046, 18. MR 4123443, DOI 10.1142/S0219199719500469
- Rolf Künnemann, The diffusion limit for reversible jump processes on $\textbf {Z}^{d}$ with ergodic random bond conductivities, Comm. Math. Phys. 90 (1983), no. 1, 27–68. MR 714611
- Alois Kufner, Lech Maligranda, and Lars-Erik Persson, The prehistory of the Hardy inequality, Amer. Math. Monthly 113 (2006), no. 8, 715–732. MR 2256532, DOI 10.2307/27642033
- W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 43–77. MR 161019
- Jean-Christophe Mourrat and James Nolen, Scaling limit of the corrector in stochastic homogenization, Ann. Appl. Probab. 27 (2017), no. 2, 944–959. MR 3655858, DOI 10.1214/16-AAP1221
- Daniel Marahrens and Felix Otto, Annealed estimates on the Green function, Probab. Theory Related Fields 163 (2015), no. 3-4, 527–573. MR 3418749, DOI 10.1007/s00440-014-0598-0
- Daniel Marahrens and Felix Otto, On annealed elliptic Green’s function estimates, Math. Bohem. 140 (2015), no. 4, 489–506. MR 3432548
- Jean-Christophe Mourrat and Felix Otto, Correlation structure of the corrector in stochastic homogenization, Ann. Probab. 44 (2016), no. 5, 3207–3233. MR 3551195, DOI 10.1214/15-AOP1045
- Mathoverflow, Does the Green’s function of the simple random walk on $\Z ^d$ always vary locally?, https://mathoverflow.net/questions/384156/does-the-greens-function-of-the-simple-random-walk-on-mathbb-zd-always-vary.
- Jürgen Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457–468. MR 170091, DOI 10.1002/cpa.3160130308
- Tatiana Nagnibeda, Random walks, spectral radii, and Ramanujan graphs, Random walks and geometry, Walter de Gruyter, Berlin, 2004, pp. 487–500. MR 2087798
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. MR 100158, DOI 10.2307/2372841
- G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random fields, Vol. I, II (Esztergom, 1979) Colloq. Math. Soc. János Bolyai, vol. 27, North-Holland, Amsterdam-New York, 1981, pp. 835–873. MR 712714
- Yehuda Pinchover and Idan Versano, On families of optimal Hardy-weights for linear second-order elliptic operators, J. Funct. Anal. 278 (2020), no. 9, 108428, 27. MR 4062324, DOI 10.1016/j.jfa.2019.108428
- Franz Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, Erven P. Noordhoff N. V., Groningen, 1956, pp. 243–250 (German). MR 88624
- Derek W. Robinson, Hardy inequalities, Rellich inequalities and local Dirichlet forms, J. Evol. Equ. 18 (2018), no. 3, 1521–1541. MR 3859458, DOI 10.1007/s00028-018-0454-2
- L. Saloff-Coste, Parabolic Harnack inequality for divergence-form second-order differential operators, Potential Anal. 4 (1995), no. 4, 429–467. Potential theory and degenerate partial differential operators (Parma). MR 1354894, DOI 10.1007/BF01053457
- Frank Spitzer, Principles of random walk, 2nd ed., Graduate Texts in Mathematics, Vol. 34, Springer-Verlag, New York-Heidelberg, 1976. MR 388547
Bibliographic Information
- Matthias Keller
- Affiliation: Universität Potsdam, Institut für Mathematik, 14476 Potsdam, Germany
- MR Author ID: 886028
- Email: matthias.keller@uni-potsdam.de
- Marius Lemm
- Affiliation: Department of Mathematics, University of Tübingen, 72076 Tübingen, Germany
- MR Author ID: 1113978
- ORCID: 0000-0001-6459-8046
- Email: marius.lemm@uni-tuebingen.de
- Received by editor(s): September 22, 2021
- Received by editor(s) in revised form: August 11, 2022
- Published electronically: June 22, 2023
- Additional Notes: The first author was financially supported by the German Science Foundation. The authors would like to thank the organizers of the program “Spectral Methods in Mathematical Physics” held in 2019 at Institut Mittag-Leffler where this project was initiated.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 6033-6062
- MSC (2020): Primary 35R02, 35J10, 31C20, 35B27, 35R60
- DOI: https://doi.org/10.1090/tran/8939
- MathSciNet review: 4630769