Skip to Main Content
Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

   
 
 

 

On Davie’s uniqueness for some degenerate SDEs


Author: Enrico Priola
Journal: Theor. Probability and Math. Statist. 103 (2020), 41-58
MSC (2020): Primary 60J76, 60H50, 34F05
DOI: https://doi.org/10.1090/tpms/1134
Published electronically: June 16, 2021
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider singular SDEs like \begin{equation} dZ_t = b(t, Z_t) dt + A Z_t dt + \sigma (t) d{L}_t , \;\; t \in [0,T], \;\; Z_0 =x \in \mathbb {R}^n, \end{equation} where $A$ is a real $n \times n$ matrix, i. e., $A \in {\mathbb {R}}^n \otimes {\mathbb {R}}^n$, $b$ is bounded and Hölder continuous, $\sigma \colon [0,\infty ) \to {\mathbb {R}}^n \otimes {\mathbb {R}}^d$ is a locally bounded function and $L= ({L}_t)$ is an $\mathbb {R}^d$-valued Lévy process, $1 \le d \le n$. We show that strong existence and uniqueness together with $L^p$-Lipschitz dependence on the initial condition $x$ imply Davie’s uniqueness or path by path uniqueness. This extends a result of [E. Priola, AIHP, 2018] proved for (0.1) when $n=d$, $A=0$ and $\sigma (t) \equiv I$. We apply the result to some singular degenerate SDEs associated to the kinetic transport operator $\frac {1}{2} \triangle _v f +$ ${v \cdot \partial _{x}f}$ $+F(x,v)\cdot \partial _{v}f$ when $n =2d$ and $L$ is an ${\mathbb {R}}^d$-valued Wiener process. For such equations strong existence and uniqueness are known under Hölder type conditions on $b$. We show that in addition also Davie’s uniqueness holds.


References [Enhancements On Off] (What's this?)

References
  • S. V. Anulova, A. Yu. Veretennikov, N. V. Krylov, R. Sh. Liptser, and A. N. Shiryaev, Stochastic calculus [ MR1039617 (91i:60002b)], Probability theory, III, Encyclopaedia Math. Sci., vol. 45, Springer, Berlin, 1998, pp. 1–253. MR 1602387
  • David Applebaum, Lévy processes and stochastic calculus, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 116, Cambridge University Press, Cambridge, 2009. MR 2512800
  • Lisa Beck, Franco Flandoli, Massimiliano Gubinelli, and Mario Maurelli, Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness, Electron. J. Probab. 24 (2019), Paper No. 136, 72. MR 4040996, DOI 10.1214/19-ejp379
  • Oleg Butkovsky and Leonid Mytnik, Regularization by noise and flows of solutions for a stochastic heat equation, Ann. Probab. 47 (2019), no. 1, 165–212. MR 3909968, DOI 10.1214/18-AOP1259
  • R. Catellier and M. Gubinelli, Averaging along irregular curves and regularisation of ODEs, Stochastic Process. Appl. 126 (2016), no. 8, 2323–2366. MR 3505229, DOI 10.1016/j.spa.2016.02.002
  • P. E. Chaudru de Raynal, Strong existence and uniqueness for degenerate SDE with Hölder drift, Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017), no. 1, 259–286 (English, with English and French summaries). MR 3606742, DOI 10.1214/15-AIHP716
  • P.E. Chaudru de Raynal, I. Honore, S. Menozzi, Strong regularization by Brownian noise propagating through a weak Hörmander structure, preprint arXiv:1810.12225.
  • A. M. Davie, Uniqueness of solutions of stochastic differential equations, Int. Math. Res. Not. IMRN 24 (2007), Art. ID rnm124, 26. MR 2377011, DOI 10.1093/imrn/rnm124
  • E. Fedrizzi and F. Flandoli, Hölder flow and differentiability for SDEs with nonregular drift, Stoch. Anal. Appl. 31 (2013), no. 4, 708–736. MR 3175794, DOI 10.1080/07362994.2012.628908
  • Ennio Fedrizzi, Franco Flandoli, Enrico Priola, and Julien Vovelle, Regularity of stochastic kinetic equations, Electron. J. Probab. 22 (2017), Paper No. 48, 42. MR 3661662, DOI 10.1214/17-EJP65
  • Franco Flandoli, Random perturbation of PDEs and fluid dynamic models, Lecture Notes in Mathematics, vol. 2015, Springer, Heidelberg, 2011. Lectures from the 40th Probability Summer School held in Saint-Flour, 2010; École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School]. MR 2796837
  • Kiyosi Itô, Stochastic processes, Springer-Verlag, Berlin, 2004. Lectures given at Aarhus University; Reprint of the 1969 original; Edited and with a foreword by Ole E. Barndorff-Nielsen and Ken-iti Sato. MR 2053326
  • N. V. Krylov, Introduction to the theory of random processes, Graduate Studies in Mathematics, vol. 43, American Mathematical Society, Providence, RI, 2002. MR 1885884
  • N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields 131 (2005), no. 2, 154–196. MR 2117951, DOI 10.1007/s00440-004-0361-z
  • Hiroshi Kunita, Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, vol. 24, Cambridge University Press, Cambridge, 1997. Reprint of the 1990 original. MR 1472487
  • Hiroshi Kunita, Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms, Real and stochastic analysis, Trends Math., Birkhäuser Boston, Boston, MA, 2004, pp. 305–373. MR 2090755
  • Hiroshi Kunita, Stochastic flows and jump-diffusions, Probability Theory and Stochastic Modelling, vol. 92, Springer, Singapore, 2019. MR 3929750
  • Grigorios A. Pavliotis, Stochastic processes and applications, Texts in Applied Mathematics, vol. 60, Springer, New York, 2014. Diffusion processes, the Fokker-Planck and Langevin equations. MR 3288096
  • Enrico Priola, Davie’s type uniqueness for a class of SDEs with jumps, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 2, 694–725 (English, with English and French summaries). MR 3795063, DOI 10.1214/16-AIHP818
  • Alfonso Rocha-Arteaga and Ken-iti Sato, Topics in infinitely divisible distributions and Lévy processes, Aportaciones Matemáticas: Investigación [Mathematical Contributions: Research], vol. 17, Sociedad Matemática Mexicana, México, 2003. MR 2042245
  • Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR 1739520
  • Ken-Iti Sato, Stochastic integrals in additive processes and application to semi-Lévy processes, Osaka J. Math. 41 (2004), no. 1, 211–236. MR 2040073
  • A. V. Shaposhnikov, Some remarks on Davie’s uniqueness theorem, Proc. Edinb. Math. Soc. (2) 59 (2016), no. 4, 1019–1035. MR 3570126, DOI 10.1017/S0013091515000589
  • A. V. Shaposhnikov and L. Wresch, Pathwise vs. path-by-path uniqueness, preprint arXiv: 2001.02869.
  • A. Ju. Veretennikov, Strong solutions and explicit formulas for solutions of stochastic integral equations, Mat. Sb. (N.S.) 111(153) (1980), no. 3, 434–452, 480 (Russian). MR 568986
  • Feng-Yu Wang and Xicheng Zhang, Degenerate SDE with Hölder-Dini drift and non-Lipschitz noise coefficient, SIAM J. Math. Anal. 48 (2016), no. 3, 2189–2226. MR 3511355, DOI 10.1137/15M1023671
  • L. Wresch, Path-by-path uniqueness of infinite-dimensional stochastic differential equations, preprint arXiv:1706.07720.
  • Xicheng Zhang, Stochastic Hamiltonian flows with singular coefficients, Sci. China Math. 61 (2018), no. 8, 1353–1384. MR 3833741, DOI 10.1007/s11425-017-9127-0

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2020): 60J76, 60H50, 34F05

Retrieve articles in all journals with MSC (2020): 60J76, 60H50, 34F05


Additional Information

Enrico Priola
Affiliation: Dipartimento di Matematica, Università degli Studi di Pavia, Via Adolfo Ferrata 5, 27100 Pavia, Italy
Email: enrico.priola@unipv.it

Keywords: Degenerate stochastic differential equations, path-by-path uniqueness, Hölder continuous drift
Received by editor(s): December 5, 2019
Published electronically: June 16, 2021
Additional Notes: The author has been partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)
Article copyright: © Copyright 2020 Taras Shevchenko National University of Kyiv