Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Topics in Optimal Transportation

About this Title

Cédric Villani, École Normale Supérieure de Lyon, Lyon, France

Publication: Graduate Studies in Mathematics
Publication Year: 2003; Volume 58
ISBNs: 978-0-8218-3312-4 (print); 978-1-4704-1804-5 (online)
DOI: https://doi.org/10.1090/gsm/058
MathSciNet review: MR1964483
MSC: Primary 90-02; Secondary 28D05, 35B65, 35J60, 49N90, 49Q20, 90B20

This volume is not part of this online collection.

Read more about this volume

View other years and volumes:

Table of Contents

Chapters

  • Chapter 1. Introduction
  • Chapter 2. The Kantorovich duality
  • Chapter 3. Geometry of optimal transportation
  • Chapter 4. Brenier’s polar factorization theorem
  • Chapter 5. The Monge-Ampère equation
  • Chapter 6. Displacement interpolation and displacement convexity
  • Chapter 7. Geometric and Gaussian inequalities
  • Chapter 8. The metric side of optimal transportation
  • Chapter 9. A differential point of view on optimal transportation
  • Chapter 10. Entropy production and transportation inequalities
  • Chapter 11. Problems