
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Maximal Cohen–Macaulay Modules Over Non–Isolated Surface Singularities and Matrix Problems
About this Title
Igor Burban, Universität zu Köln, Mathematisches Institut, Weyertal 86-90, D-50931 Köln, Germany and Yuriy Drozd, Institute of Mathematics National Academy of Sciences, Tereschenkivska str. 3, 01004 Kyiv, Ukraine
Publication: Memoirs of the American Mathematical Society
Publication Year:
2017; Volume 248, Number 1178
ISBNs: 978-1-4704-2537-1 (print); 978-1-4704-4058-9 (online)
DOI: https://doi.org/10.1090/memo/1178
Published electronically: March 16, 2017
Keywords: Maximal Cohen–Macaulay modules,
matrix factorizations,
non–isolated surface singularities,
degenerate cusps,
tame matrix problems
MSC: Primary 16G50, 16G60, 13C14, 13H10
Table of Contents
Chapters
- Introduction, motivation and historical remarks
- 1. Generalities on maximal Cohen–Macaulay modules
- 2. Category of triples in dimension one
- 3. Main construction
- 4. Serre quotients and proof of Main Theorem
- 5. Singularities obtained by gluing cyclic quotient singularities
- 6. Maximal Cohen–Macaulay modules over $\mathbb {k}\lBrack x, y, z\rBrack /(x^2 + y^3 - xyz)$
- 7. Representations of decorated bunches of chains–I
- 8. Maximal Cohen–Macaulay modules over degenerate cusps–I
- 9. Maximal Cohen–Macaulay modules over degenerate cusps–II
- 10. Schreyer’s question
- 11. Remarks on rings of discrete and tame CM–representation type
- 12. Representations of decorated bunches of chains–II
Abstract
In this article we develop a new method to deal with maximal Cohen–Macaulay modules over non–isolated surface singularities. In particular, we give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen–Macaulay modules. Next, we prove that the degenerate cusp singularities have tame Cohen–Macaulay representation type. Our approach is illustrated on the case of $\mathbb {k}\lBrack x,y,z\rBrack /(xyz)$ as well as several other rings. This study of maximal Cohen–Macaulay modules over non–isolated singularities leads to a new class of problems of linear algebra, which we call representations of decorated bunches of chains. We prove that these matrix problems have tame representation type and describe the underlying canonical forms.- Mohammed Abouzaid, Denis Auroux, Alexander I. Efimov, Ludmil Katzarkov, and Dmitri Orlov, Homological mirror symmetry for punctured spheres, J. Amer. Math. Soc. 26 (2013), no. 4, 1051–1083. MR 3073884, DOI 10.1090/S0894-0347-2013-00770-5
- M. Artin and J.-L. Verdier, Reflexive modules over rational double points, Math. Ann. 270 (1985), no. 1, 79–82. MR 769609, DOI 10.1007/BF01455531
- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 131423, DOI 10.1112/plms/s3-7.1.414
- Maurice Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), no. 2, 511–531. MR 816307, DOI 10.1090/S0002-9947-1986-0816307-7
- Maurice Auslander, Functors and morphisms determined by objects, Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976) Dekker, New York, 1978, pp. 1–244. Lecture Notes in Pure Appl. Math., Vol. 37. MR 0480688
- Corina Baciu, Maximal Cohen-Macaulay modules and stable vector bundles, Computational commutative and non-commutative algebraic geometry, NATO Sci. Ser. III Comput. Syst. Sci., vol. 196, IOS, Amsterdam, 2005, pp. 65–73. MR 2179191
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Lesya Bodnarchuk, Igor Burban, Yuriy Drozd, and Gert-Martin Greuel, Vector bundles and torsion free sheaves on degenerations of elliptic curves, Global aspects of complex geometry, Springer, Berlin, 2006, pp. 83–128. MR 2264108, DOI 10.1007/3-540-35480-8_{3}
- Raf Bocklandt, Noncommutative mirror symmetry for punctured surfaces, Trans. Amer. Math. Soc. 368 (2016), no. 1, 429–469. With an appendix by Mohammed Abouzaid. MR 3413869, DOI 10.1090/S0002-9947-2015-06375-2
- V. M. Bondarenko, Bundles of semichained sets and their representations, Akad. Nauk Ukrain. SSR Inst. Mat. Preprint 60 (1988), 32 (Russian). MR 1034077
- V. M. Bondarenko, Representations of bundles of semichained sets and their applications, Algebra i Analiz 3 (1991), no. 5, 38–61 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 3 (1992), no. 5, 973–996. MR 1186235
- N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 8 et 9, Springer, Berlin, 2006 (French). Reprint of the 1983 original. MR 2284892
- Egbert Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1967/68), 336–358 (German). MR 222084, DOI 10.1007/BF01425318
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- R.-O. Buchweitz, Maximal Cohen–Macaulay modules and Tate–Cohomology over Gorenstein rings, Preprint 1987.
- R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165–182. MR 877011, DOI 10.1007/BF01405096
- I. Burban, Abgeleitete Kategorien und Matrixprobleme, PhD Thesis, Kaiserslautern 2003, available at https://kluedo.ub.uni-kl.de/files/1434/phd.pdf.
- Igor Burban and Yuriy Drozd, Derived categories of nodal algebras, J. Algebra 272 (2004), no. 1, 46–94. MR 2029026, DOI 10.1016/j.jalgebra.2003.07.025
- Igor Burban and Yurij Drozd, Coherent sheaves on rational curves with simple double points and transversal intersections, Duke Math. J. 121 (2004), no. 2, 189–229. MR 2034641, DOI 10.1215/S0012-7094-04-12121-9
- Igor Burban and Yuriy Drozd, Maximal Cohen-Macaulay modules over surface singularities, Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 101–166. MR 2484725, DOI 10.4171/062-1/3
- Igor Burban and Wassilij Gnedin, Cohen-Macaulay modules over some non-reduced curve singularities, J. Pure Appl. Algebra 220 (2016), no. 12, 3777–3815. MR 3517556, DOI 10.1016/j.jpaa.2016.05.010
- Igor Burban, Osamu Iyama, Bernhard Keller, and Idun Reiten, Cluster tilting for one-dimensional hypersurface singularities, Adv. Math. 217 (2008), no. 6, 2443–2484. MR 2397457, DOI 10.1016/j.aim.2007.10.007
- Igor Burban and Bernd Kreussler, Vector bundles on degenerations of elliptic curves and Yang-Baxter equations, Mem. Amer. Math. Soc. 220 (2012), no. 1035, vi+131. MR 3015125, DOI 10.1090/S0065-9266-2012-00654-X
- W. W. Crawley-Boevey, Matrix problems and Drozd’s theorem, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 199–222. MR 1171233
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. With applications to finite groups and orders; Reprint of the 1981 original; A Wiley-Interscience Publication. MR 1038525
- Theo de Jong and Gerhard Pfister, Local analytic geometry, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 2000. Basic theory and applications. MR 1760953
- Ernst Dieterich, Tame orders, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 233–261. MR 1171235
- Ernst Dieterich, Lattices over curve singularities with large conductor, Invent. Math. 114 (1993), no. 2, 399–433. MR 1240643, DOI 10.1007/BF01232675
- Ju. A. Drozd, Matrix problems, and categories of matrices, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 144–153 (Russian). Investigations on the theory of representations. MR 0340282
- Ju. A. Drozd, Tame and wild matrix problems, Representations and quadratic forms (Russian), Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1979, pp. 39–74, 154 (Russian). MR 600111
- Yuriy A. Drozd, Reduction algorithm and representations of boxes and algebras, C. R. Math. Acad. Sci. Soc. R. Can. 23 (2001), no. 4, 97–125. MR 1869054
- Yuriy A. Drozd, Vector bundles and Cohen-Macaulay modules, Representations of finite dimensional algebras and related topics in Lie theory and geometry, Fields Inst. Commun., vol. 40, Amer. Math. Soc., Providence, RI, 2004, pp. 189–222. MR 2057156
- Yuriy Drozd, Vector bundles over projective curves, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2008. XX Escola de Álgebra. [XX School of Algebra]. MR 2437568
- Yu. A. Drozd and G.-M. Greuel, Tame-wild dichotomy for Cohen-Macaulay modules, Math. Ann. 294 (1992), no. 3, 387–394. MR 1188126, DOI 10.1007/BF01934330
- Yu. A. Drozd and G.-M. Greuel, Cohen-Macaulay module type, Compositio Math. 89 (1993), no. 3, 315–338. MR 1255700
- Yuri A. Drozd and Gert-Martin Greuel, Tame and wild projective curves and classification of vector bundles, J. Algebra 246 (2001), no. 1, 1–54. MR 1872612, DOI 10.1006/jabr.2001.8934
- Yuriy A. Drozd, Gert-Martin Greuel, and Irina Kashuba, On Cohen-Macaulay modules on surface singularities, Mosc. Math. J. 3 (2003), no. 2, 397–418, 742 (English, with English and Russian summaries). Dedicated to Vladimir I. Arnold on the occasion of his 65th birthday. MR 2025266, DOI 10.17323/1609-4514-2003-3-2-397-418
- Ju. A. Drozd and A. V. Roĭter, Commutative rings with a finite number of indecomposable integral representations, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 783–798 (Russian). MR 0220716
- Alexander I. Efimov, Homological mirror symmetry for curves of higher genus, Adv. Math. 230 (2012), no. 2, 493–530. MR 2914956, DOI 10.1016/j.aim.2012.02.022
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- Hélène Esnault, Reflexive modules on quotient surface singularities, J. Reine Angew. Math. 362 (1985), 63–71. MR 809966, DOI 10.1515/crll.1985.362.63
- Hélène Esnault and Eckart Viehweg, Two-dimensional quotient singularities deform to quotient singularities, Math. Ann. 271 (1985), no. 3, 439–449. MR 787191, DOI 10.1007/BF01456078
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821
- Peter Gabriel, Finite representation type is open, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974) Carleton Univ., Ottawa, Ont., 1974, pp. 23 pp. Carleton Math. Lecture Notes, No. 9. MR 0376769
- Lennart Galinat, Orlov’s equivalence and maximal Cohen-Macaulay modules over the cone of an elliptic curve, Math. Nachr. 287 (2014), no. 13, 1438–1455. MR 3256973, DOI 10.1002/mana.201300106
- F. R. Gantmacher, The theory of matrices. Vol. 1, AMS Chelsea Publishing, Providence, RI, 1998. Translated from the Russian by K. A. Hirsch; Reprint of the 1959 translation. MR 1657129
- G. Gonzalez-Sprinberg and J.-L. Verdier, Construction géométrique de la correspondance de McKay, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 409–449 (1984) (French). MR 740077
- E. L. Green and I. Reiner, Integral representations and diagrams, Michigan Math. J. 25 (1978), no. 1, 53–84. MR 497882
- G.-M. Greuel and H. Knörrer, Einfache Kurvensingularitäten und torsionsfreie Moduln, Math. Ann. 270 (1985), no. 3, 417–425 (German). MR 774367, DOI 10.1007/BF01473437
- G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to singularities and deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2290112
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- H. Jacobinski, Sur les ordres commutatifs avec un nombre fini de réseaux indécomposables, Acta Math. 118 (1967), 1–31 (French). MR 212001, DOI 10.1007/BF02392474
- Jürgen Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln, Math. Ann. 233 (1978), no. 1, 21–34 (German). MR 463155, DOI 10.1007/BF01351494
- Osamu Iyama and Idun Reiten, Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, Amer. J. Math. 130 (2008), no. 4, 1087–1149. MR 2427009, DOI 10.1353/ajm.0.0011
- Osamu Iyama and Yuji Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117–168. MR 2385669, DOI 10.1007/s00222-007-0096-4
- Constantin P. M. Kahn, Reflexive Moduln auf einfach-elliptischen Flächensingularitäten, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 188, Universität Bonn, Mathematisches Institut, Bonn, 1988 (German). Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1988. MR 930666
- Constantin P. Kahn, Reflexive modules on minimally elliptic singularities, Math. Ann. 285 (1989), no. 1, 141–160. MR 1010197, DOI 10.1007/BF01442678
- Anton Kapustin and Yi Li, Topological correlators in Landau-Ginzburg models with boundaries, Adv. Theor. Math. Phys. 7 (2003), no. 4, 727–749. MR 2039036
- Bernhard Keller, Daniel Murfet, and Michel Van den Bergh, On two examples by Iyama and Yoshino, Compos. Math. 147 (2011), no. 2, 591–612. MR 2776613, DOI 10.1112/S0010437X10004902
- Mikhail Khovanov and Lev Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008), no. 1, 1–91. MR 2391017, DOI 10.4064/fm199-1-1
- Horst Knörrer, Torsionsfreie Moduln bei Deformation von Kurvensingularitäten, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 150–155 (German). MR 915172, DOI 10.1007/BFb0078841
- Horst Knörrer, Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math. 88 (1987), no. 1, 153–164. MR 877010, DOI 10.1007/BF01405095
- Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 120–139. MR 1403918
- Graham J. Leuschke and Roger Wiegand, Cohen-Macaulay representations, Mathematical Surveys and Monographs, vol. 181, American Mathematical Society, Providence, RI, 2012. MR 2919145
- L. A. Nazarova and A. V. Roĭter, A certain problem of I. M. Gel′fand, Funkcional. Anal. i Priložen. 7 (1973), no. 4, 54–69 (Russian). MR 0332829
- Dmitri Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Boston, MA, 2009, pp. 503–531. MR 2641200, DOI 10.1007/978-0-8176-4747-6_{1}6
- Dmitri Orlov, Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math. 226 (2011), no. 1, 206–217. MR 2735755, DOI 10.1016/j.aim.2010.06.016
- N. Popescu, Abelian categories with applications to rings and modules, Academic Press, London-New York, 1973. London Mathematical Society Monographs, No. 3. MR 0340375
- Oswald Riemenschneider, Zweidimensionale Quotientensingularitäten: Gleichungen und Syzygien, Arch. Math. (Basel) 37 (1981), no. 5, 406–417 (German). MR 643282, DOI 10.1007/BF01234375
- Claus Michael Ringel and Klaus W. Roggenkamp, Diagrammatic methods in the representation theory of orders, J. Algebra 60 (1979), no. 1, 11–42. MR 549096, DOI 10.1016/0021-8693(79)90106-6
- Frank-Olaf Schreyer, Finite and countable CM-representation type, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 9–34. MR 915167, DOI 10.1007/BFb0078836
- Paul Seidel, Homological mirror symmetry for the genus two curve, J. Algebraic Geom. 20 (2011), no. 4, 727–769. MR 2819674, DOI 10.1090/S1056-3911-10-00550-3
- Jean-Pierre Serre, Local algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. Translated from the French by CheeWhye Chin and revised by the author. MR 1771925
- Nick Sheridan, On the homological mirror symmetry conjecture for pairs of pants, J. Differential Geom. 89 (2011), no. 2, 271–367. MR 2863919
- N. I. Shepherd-Barron, Degenerations with numerically effective canonical divisor, The birational geometry of degenerations (Cambridge, Mass., 1981) Progr. Math., vol. 29, Birkhäuser Boston, Boston, MA, 1983, pp. 33–84. MR 690263
- Jan Stevens, Degenerations of elliptic curves and equations for cusp singularities, Math. Ann. 311 (1998), no. 2, 199–222. MR 1625766, DOI 10.1007/s002080050184
- Jan Stevens, Improvements of nonisolated surface singularities, J. London Math. Soc. (2) 39 (1989), no. 1, 129–144. MR 989925, DOI 10.1112/jlms/s2-39.1.129
- D. van Straten, Weakly normal surface singularities and their improvements, Dissertation, Leiden 1987.
- Michel Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, 423–455. MR 2057015, DOI 10.1215/S0012-7094-04-12231-6
- Roger Wiegand, Noetherian rings of bounded representation type, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 497–516. MR 1015536, DOI 10.1007/978-1-4612-3660-3_{2}7
- J. Wunram, Reflexive modules on cyclic quotient surface singularities, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 221–231. MR 915177, DOI 10.1007/BFb0078846
- Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR 1079937
- Yuji Yoshino and Takuji Kawamoto, The fundamental module of a normal local domain of dimension $2$, Trans. Amer. Math. Soc. 309 (1988), no. 1, 425–431. MR 957079, DOI 10.1090/S0002-9947-1988-0957079-7