
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
The canonical ring of a stacky curve
About this Title
John Voight and David Zureick-Brown
Publication: Memoirs of the American Mathematical Society
Publication Year:
2022; Volume 277, Number 1362
ISBNs: 978-1-4704-5228-5 (print); 978-1-4704-7094-4 (online)
DOI: https://doi.org/10.1090/memo/1362
Published electronically: March 28, 2022
Keywords: Canonical rings,
canonical embeddings,
stacks,
algebraic curves,
modular forms,
automorphic forms,
generic initial ideals,
Gröbner bases
Table of Contents
Chapters
- 1. Introduction
- 2. Canonical rings of curves
- 3. A generalized Max Noether’s theorem for curves
- 4. Canonical rings of classical log curves
- 5. Stacky curves
- 6. Rings of modular forms
- 7. Canonical rings of log stacky curves: genus zero
- 8. Inductive presentation of the canonical ring
- 9. Log stacky base cases in genus 0
- 10. Spin canonical rings
- 11. Relative canonical algebras
- Appendix: Tables of canonical rings
Abstract
Generalizing the classical theorems of Max Noether and Petri, we describe generators and relations for the canonical ring of a stacky curve, including an explicit Gröbner basis. We work in a general algebro-geometric context and treat log canonical and spin canonical rings as well. As an application, we give an explicit presentation for graded rings of modular forms arising from finite-area quotients of the upper half-plane by Fuchsian groups.- Dan Abramovich, Birational geometry for number theorists, Arithmetic geometry, Clay Math. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 2009, pp. 335–373. MR 2498065
- Enrico Arbarello, Maurizio Cornalba, and Phillip A. Griffiths, Geometry of algebraic curves. Volume II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011. With a contribution by Joseph Daniel Harris. MR 2807457, DOI 10.1007/978-3-540-69392-5
- Dan Abramovich, Tom Graber, and Angelo Vistoli, Algebraic orbifold quantum products, Orbifolds in mathematics and physics (Madison, WI, 2001) Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 1–24. MR 1950940, DOI 10.1090/conm/310/05397
- Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337–1398. MR 2450211, DOI 10.1353/ajm.0.0017
- William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3, American Mathematical Society, Providence, RI, 1994. MR 1287608, DOI 10.1090/gsm/003
- Jarod Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2349–2402 (English, with English and French summaries). MR 3237451
- Alejandro Adem, Johann Leida, and Yongbin Ruan, Orbifolds and stringy topology, Cambridge Tracts in Mathematics, vol. 171, Cambridge University Press, Cambridge, 2007. MR 2359514, DOI 10.1017/CBO9780511543081
- Dan Abramovich, Martin Olsson, and Angelo Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057–1091 (English, with English and French summaries). MR 2427954
- Dan Abramovich, Martin Olsson, and Angelo Vistoli, Twisted stable maps to tame Artin stacks, J. Algebraic Geom. 20 (2011), no. 3, 399–477. MR 2786662, DOI 10.1090/S1056-3911-2010-00569-3
- Allan Adler and S. Ramanan, Moduli of abelian varieties, Lecture Notes in Mathematics, vol. 1644, Springer-Verlag, Berlin, 1996. MR 1621185, DOI 10.1007/BFb0093659
- Enrico Arbarello and Edoardo Sernesi, Petri’s approach to the study of the ideal associated to a special divisor, Invent. Math. 49 (1978), no. 2, 99–119. MR 511185, DOI 10.1007/BF01403081
- Michael F. Atiyah, Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. (4) 4 (1971), 47–62. MR 286136
- Dan Abramovich and Angelo Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), no. 1, 27–75. MR 1862797, DOI 10.1090/S0894-0347-01-00380-0
- D. W. Babbage, A note on the quadrics through a canonical curve, J. London Math. Soc. 14 (1939), 310–315. MR 496, DOI 10.1112/jlms/s1-14.4.310
- Peter Bending, Alan Camina, and Robert Guralnick, Automorphisms of the modular curve, Progress in Galois theory, Dev. Math., vol. 12, Springer, New York, 2005, pp. 25–37. MR 2148458, DOI 10.1007/0-387-23534-5_{2}
- Arnaud Beauville, La conjecture de Green générique (d’après C. Voisin), Astérisque 299 (2005), Exp. No. 924, vii, 1–14 (French, with French summary). Séminaire Bourbaki. Vol. 2003/2004. MR 2167199
- Lev A. Borisov and Paul E. Gunnells, Toric modular forms of higher weight, J. Reine Angew. Math. 560 (2003), 43–64. MR 1992801, DOI 10.1515/crll.2003.060
- Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004. MR 2030225, DOI 10.1007/978-3-642-57739-0
- Herbert Lange and Christina Birkenhake, Complex abelian varieties, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 1992. MR 1217487, DOI 10.1007/978-3-662-02788-2
- Kai Behrend and Behrang Noohi, Uniformization of Deligne-Mumford curves, J. Reine Angew. Math. 599 (2006), 111–153. MR 2279100, DOI 10.1515/CRELLE.2006.080
- David Bayer and Michael Stillman, A criterion for detecting $m$-regularity, Invent. Math. 87 (1987), no. 1, 1–11. MR 862710, DOI 10.1007/BF01389151
- Christine Berkesch and Frank-Olaf Schreyer, Syzygies, finite length modules, and random curves, Commutative algebra and noncommutative algebraic geometry. Vol. I, Math. Sci. Res. Inst. Publ., vol. 67, Cambridge Univ. Press, New York, 2015, pp. 25–52. MR 3525467
- S. T. Chapman, P. A. García-Sánchez, D. Llena, and J. C. Rosales, Presentations of finitely generated cancellative commutative monoids and nonnegative solutions of systems of linear equations, Discrete Appl. Math. 154 (2006), no. 14, 1947–1959. MR 2254337, DOI 10.1016/j.dam.2006.03.013
- David A. Cox, John Little, and Donal O’Shea, Using algebraic geometry, 2nd ed., Graduate Texts in Mathematics, vol. 185, Springer, New York, 2005. MR 2122859
- David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, 3rd ed., Undergraduate Texts in Mathematics, Springer, New York, 2007. An introduction to computational algebraic geometry and commutative algebra. MR 2290010, DOI 10.1007/978-0-387-35651-8
- Arthur B. Coble, Algebraic geometry and theta functions, American Mathematical Society Colloquium Publications, Vol. 10, American Mathematical Society, Providence, R.I., 1982. Reprint of the 1929 edition. MR 733252
- B. Conrad, Keel-mori theorem via stacks, Unpublished, preprint available at http://math.stanford.edu/~conrad/papers/coarsespace.pdf.
- Gunther Cornelissen, Drinfeld modular forms of weight one, J. Number Theory 67 (1997), no. 2, 215–228. MR 1486500, DOI 10.1006/jnth.1997.2185
- H. Darmon, Faltings plus epsilon, Wiles plus epsilon, and the generalized Fermat equation, C. R. Math. Rep. Acad. Sci. Canada 19 (1997), no. 1, 3–14. MR 1479291
- Henri Darmon and Andrew Granville, On the equations $z^m=F(x,y)$ and $Ax^p+By^q=Cz^r$, Bull. London Math. Soc. 27 (1995), no. 6, 513–543. MR 1348707, DOI 10.1112/blms/27.6.513
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240
- Olivier Dodane, Théorèmes de Petri pour les courbes stables et dégénérescence du système d’équations du plongement canonique, Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, 2009 (French, with French summary). Thèse, Université Louis Pasteur, Strasbourg, 2009. MR 2760950
- P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1973, pp. 143–316. Lecture Notes in Math., Vol. 349 (French). MR 0337993
- Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
- Dan Edidin, Riemann-Roch for Deligne-Mumford stacks, A celebration of algebraic geometry, Clay Math. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 2013, pp. 241–266. MR 3114943
- Dan Edidin, Brendan Hassett, Andrew Kresch, and Angelo Vistoli, Brauer groups and quotient stacks, Amer. J. Math. 123 (2001), no. 4, 761–777. MR 1844577
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. A second course in commutative algebra and algebraic geometry. MR 2103875
- Noam D. Elkies, The Klein quartic in number theory, The eightfold way, Math. Sci. Res. Inst. Publ., vol. 35, Cambridge Univ. Press, Cambridge, 1999, pp. 51–101. MR 1722413
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- André Galligo, À propos du théorème de-préparation de Weierstrass, Fonctions de plusieurs variables complexes (Sém. François Norguet, octobre 1970–décembre 1973; à la mémoire d’André Martineau), Springer, Berlin, 1974, pp. 543–579. Lecture Notes in Math., Vol. 409 (French). Thèse de 3ème cycle soutenue le 16 mai 1973 à l’Institut de Mathématique et Sciences Physiques de l’Université de Nice. MR 0402102
- Benedict H. Gross and Joe Harris, On some geometric constructions related to theta characteristics, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 279–311. MR 2058611
- Mark Green and Robert Lazarsfeld, A simple proof of Petri’s theorem on canonical curves, Geometry today (Rome, 1984) Progr. Math., vol. 60, Birkhäuser Boston, Boston, MA, 1985, pp. 129–142. MR 895152
- Eyal Z. Goren, Lectures on Hilbert modular varieties and modular forms, CRM Monograph Series, vol. 14, American Mathematical Society, Providence, RI, 2002. With the assistance of Marc-Hubert Nicole. MR 1863355, DOI 10.1090/crmm/014
- Carolyn Gordon, Orbifolds and their spectra, Spectral geometry, Proc. Sympos. Pure Math., vol. 84, Amer. Math. Soc., Providence, RI, 2012, pp. 49–71. MR 2985309, DOI 10.1090/pspum/084/1348
- Gert-Martin Greuel and Gerhard Pfister, A Singular introduction to commutative algebra, Second, extended edition, Springer, Berlin, 2008. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann; With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2363237
- Mark L. Green, The canonical ring of a variety of general type, Duke Math. J. 49 (1982), no. 4, 1087–1113. MR 683012
- Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. MR 739785
- Mark L. Green, Generic initial ideals [MR1648665], Six lectures on commutative algebra, Mod. Birkhäuser Class., Birkhäuser Verlag, Basel, 2010, pp. 119–186. MR 2641237, DOI 10.1007/978-3-0346-0329-4_{2}
- Benedict H. Gross, A tameness criterion for Galois representations associated to modular forms (mod $p$), Duke Math. J. 61 (1990), no. 2, 445–517. MR 1074305, DOI 10.1215/S0012-7094-90-06119-8
- A. Geraschenko and M. Satriano, Torus quotients as global quotients by finite groups, 2012.
- Anton Geraschenko and Matthew Satriano, Toric stacks II: Intrinsic characterization of toric stacks, Trans. Amer. Math. Soc. 367 (2015), no. 2, 1073–1094. MR 3280037, DOI 10.1090/S0002-9947-2014-06064-9
- Anton Geraschenko and Matthew Satriano, A “bottom up” characterization of smooth Deligne-Mumford stacks, Int. Math. Res. Not. IMRN 21 (2017), 6469–6483. MR 3719470, DOI 10.1093/imrn/rnw201
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Joe Harris, Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc. 271 (1982), no. 2, 611–638. MR 654853, DOI 10.1090/S0002-9947-1982-0654853-6
- David Harbater, Riemann’s existence theorem, The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I, Adv. Lect. Math. (ALM), vol. 35, Int. Press, Somerville, MA, 2016, pp. 275–286. MR 3525919
- Klaus Hulek, Projective geometry of elliptic curves, Astérisque 137 (1986), 143 (English, with French summary). MR 845383
- Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 0491680
- Shujuan Ji, Analogs of $\Delta (z)$ for triangular Shimura curves, Acta Arith. 84 (1998), no. 2, 97–108. MR 1614322, DOI 10.4064/aa-84-2-97-108
- Nicholas M. Katz, Local-to-global extensions of representations of fundamental groups, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 69–106 (English, with French summary). MR 867916
- Martin Kreuzer and Lorenzo Robbiano, Computational commutative algebra. 1, Springer-Verlag, Berlin, 2000. MR 1790326, DOI 10.1007/978-3-540-70628-1
- Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569, DOI 10.1515/9781400881710
- Seán Keel and Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), no. 1, 193–213. MR 1432041, DOI 10.2307/2951828
- Kamal Khuri-Makdisi, Moduli interpretation of Eisenstein series, Int. J. Number Theory 8 (2012), no. 3, 715–748. MR 2904927, DOI 10.1142/S1793042112500418
- M. I. Knopp, Generation of the graded ring of automorphic forms on the Hecke groups, Bull. Soc. Math. Belg. Sér. B 40 (1988), no. 1, 81–89. MR 951007
- Donald Knutson, Algebraic spaces, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin-New York, 1971. MR 0302647
- Andrew Kresch, On the geometry of Deligne-Mumford stacks, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 259–271. MR 2483938, DOI 10.1090/pspum/080.1/2483938
- John B. Little, Canonical curves and the Petri scheme, Gröbner bases and applications (Linz, 1998) London Math. Soc. Lecture Note Ser., vol. 251, Cambridge Univ. Press, Cambridge, 1998, pp. 381–392. MR 1708890
- Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927
- Aaron Landesman, Peter Ruhm, and Robin Zhang, Spin canonical rings of log stacky curves, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2339–2383 (English, with English and French summaries). MR 3580174
- Aaron Landesman, Peter Ruhm, and Robin Zhang, Section rings of $\Bbb Q$-divisors on minimal rational surfaces, Math. Res. Lett. 25 (2018), no. 4, 1329–1357. MR 3882166, DOI 10.4310/MRL.2018.v25.n4.a13
- John Milnor, On the $3$-dimensional Brieskorn manifolds $M(p,q,r)$, Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Princeton Univ. Press, Princeton, N. J., 1975, pp. 175–225. Ann. of Math. Studies, No. 84. MR 0418127
- Ieke Moerdijk, Orbifolds as groupoids: an introduction, Orbifolds in mathematics and physics (Madison, WI, 2001) Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 205–222. MR 1950948, DOI 10.1090/conm/310/05405
- I. Moerdijk and D. A. Pronk, Orbifolds, sheaves and groupoids, $K$-Theory 12 (1997), no. 1, 3–21. MR 1466622, DOI 10.1023/A:1007767628271
- David Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29–100. MR 0282975
- David Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971), 181–192. MR 292836
- David Mumford, Curves and their Jacobians, University of Michigan Press, Ann Arbor, Mich., 1975. MR 0419430
- J. M. S. Neves, Halfcanonical rings on algebraic curves and applications to surfaces of general type, Ph.D. Thesis–University of Warwick.
- R. Noot, The canonical embedding of stable curves, University Utrecht Department of Mathematics Preprint, no. 520 (1988).
- B. Noohi, Foundations of topological stacks I.
- Evan O’Dorney, Canonical rings of $\Bbb {Q}$-divisors on $\Bbb {P}^1$, Ann. Comb. 19 (2015), no. 4, 765–784. MR 3415011, DOI 10.1007/s00026-015-0280-y
- Andrew Ogg, Modular forms and Dirichlet series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0256993
- Martin C. Olsson, (Log) twisted curves, Compos. Math. 143 (2007), no. 2, 476–494. MR 2309994, DOI 10.1112/S0010437X06002442
- Martin Olsson, Algebraic spaces and stacks, American Mathematical Society Colloquium Publications, vol. 62, American Mathematical Society, Providence, RI, 2016. MR 3495343, DOI 10.1090/coll/062
- K. Petri, Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen, Math. Ann. 88 (1923), no. 3-4, 242–289 (German). MR 1512130, DOI 10.1007/BF01579181
- B. Poonen, The projective line minus three fractional points, Slides from CNTA (2006), http://www-math.mit.edu/~poonen/slides/campana_s.pdf.
- Irena Peeva and Mike Stillman, The minimal free resolution of a Borel ideal, Expo. Math. 26 (2008), no. 3, 237–247. MR 2437094, DOI 10.1016/j.exmath.2007.10.003
- Bjorn Poonen, Edward F. Schaefer, and Michael Stoll, Twists of $X(7)$ and primitive solutions to $x^2+y^3=z^7$, Duke Math. J. 137 (2007), no. 1, 103–158. MR 2309145, DOI 10.1215/S0012-7094-07-13714-1
- John G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 149, Springer, New York, 2006. MR 2249478
- Miles Reid, Infinitesimal view of extending a hyperplane section—deformation theory and computer algebra, Algebraic geometry (L’Aquila, 1988) Lecture Notes in Math., vol. 1417, Springer, Berlin, 1990, pp. 214–286. MR 1040562, DOI 10.1007/BFb0083344
- M. Reid, Graded rings and birational geometry, Proc. of algebraic geometry symposium (Kinosaki), 2000, pp. 1–72.
- J. C. Rosales, P. A. García-Sánchez, and J. M. Urbano-Blanco, On presentations of commutative monoids, Internat. J. Algebra Comput. 9 (1999), no. 5, 539–553. MR 1719711, DOI 10.1142/S0218196799000333
- N. Rustom, Algebra and arithmetic of modular forms, Ph. D. Thesis–University of Copenhagen, 2014.
- Nadim Rustom, Generators of graded rings of modular forms, J. Number Theory 138 (2014), 97–118. MR 3168924, DOI 10.1016/j.jnt.2013.12.008
- Nadim Rustom, Generators and relations of the graded algebra of modular forms, Ramanujan J. 39 (2016), no. 2, 315–338. MR 3448986, DOI 10.1007/s11139-015-9674-z
- David Rydh, Existence and properties of geometric quotients, J. Algebraic Geom. 22 (2013), no. 4, 629–669. MR 3084720, DOI 10.1090/S1056-3911-2013-00615-3
- I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359–363. MR 79769, DOI 10.1073/pnas.42.6.359
- A. J. Scholl, On the algebra of modular forms on a congruence subgroup, Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 3, 461–466. MR 542692, DOI 10.1017/S0305004100056310
- Frank-Olaf Schreyer, A standard basis approach to syzygies of canonical curves, J. Reine Angew. Math. 421 (1991), 83–123. MR 1129577, DOI 10.1515/crll.1991.421.83
- Peter Scott, The geometries of $3$-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487. MR 705527, DOI 10.1112/blms/15.5.401
- B. Saint-Donat, On Petri’s analysis of the linear system of quadrics through a canonical curve, Math. Ann. 206 (1973), 157–175. MR 337983, DOI 10.1007/BF01430982
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Publications of the Mathematical Society of Japan, No. 11. MR 0314766
- The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2017.
- R. P. Stanley, Combinatorics and commutative algebra, Springer, 2004.
- Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949, DOI 10.1090/ulect/008
- John Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952), 400–406. MR 47631, DOI 10.1090/S0002-9939-1952-0047631-9
- S. Tomohiko and S. Hayato, An explicit structure of the graded ring of modular forms of small level, preprint arXiv:1108.3933 (2011).
- W. Thurston, The geometry and topology of three-manifolds, Princeton University Press, New Jersey, 1997.
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, DOI 10.1007/BF01388892
- John Voight, Shimura curves of genus at most two, Math. Comp. 78 (2009), no. 266, 1155–1172. MR 2476577, DOI 10.1090/S0025-5718-08-02163-7
- John Voight and John Willis, Computing power series expansions of modular forms, Computations with modular forms, Contrib. Math. Comput. Sci., vol. 6, Springer, Cham, 2014, pp. 331–361. MR 3381459, DOI 10.1007/978-3-319-03847-6_{1}3
- Philip Wagreich, Algebras of automorphic forms with few generators, Trans. Amer. Math. Soc. 262 (1980), no. 2, 367–389. MR 586722, DOI 10.1090/S0002-9947-1980-0586722-2
- Philip Wagreich, Automorphic forms and singularities with $\textbf {C}^{\ast }$-action, Illinois J. Math. 25 (1981), no. 3, 359–382. MR 620423