
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Cohomology of the Moduli Space of Cubic Threefolds and Its Smooth Models
About this Title
Sebastian Casalaina-Martin, Samuel Grushevsky, Klaus Hulek and Radu Laza
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 282, Number 1395
ISBNs: 978-1-4704-6020-4 (print); 978-1-4704-7351-8 (online)
DOI: https://doi.org/10.1090/memo/1395
Published electronically: January 3, 2023
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries
- 3. The cohomology of the Kirwan blowup, part I: equivariant cohomology of the semi-stable locus
- 4. The cohomology of the Kirwan blowup, part II
- 5. The intersection cohomology of the GIT moduli space $\mathcal {M}^{\operatorname {GIT}}$
- 6. The intersection cohomology of the ball quotient
- 7. The cohomology of the toroidal compactification
- A. Equivariant cohomology
- B. Stabilizers, normalizers, and fixed loci for cubic threefolds
- C. The moduli space of cubic surfaces
Abstract
We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball quotient model, due to Allcock–Carlson–Toledo. Our starting point is Kirwan’s method. We then follow by investigating the behavior of the cohomology under the birational maps relating the various models, using the decomposition theorem in different ways, and via a detailed study of the boundary of the ball quotient model. As an easy illustration of our methods, the simpler case of the moduli space of cubic surfaces is discussed in an appendix.- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. MR 702806, DOI 10.1098/rsta.1983.0017
- Daniel Allcock, James A. Carlson, and Domingo Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom. 11 (2002), no. 4, 659–724. MR 1910264, DOI 10.1090/S1056-3911-02-00314-4
- Daniel Allcock, James A. Carlson, and Domingo Toledo, The moduli space of cubic threefolds as a ball quotient, Mem. Amer. Math. Soc. 209 (2011), no. 985, xii+70. MR 2789835, DOI 10.1090/S0065-9266-10-00591-0
- Daniel Allcock, The Leech lattice and complex hyperbolic reflections, Invent. Math. 140 (2000), no. 2, 283–301. MR 1756997, DOI 10.1007/s002220050363
- Daniel Allcock, The moduli space of cubic threefolds, J. Algebraic Geom. 12 (2003), no. 2, 201–223. MR 1949641, DOI 10.1090/S1056-3911-02-00313-2
- Avner Ash, David Mumford, Michael Rapoport, and Yung-Sheng Tai, Smooth compactifications of locally symmetric varieties, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. With the collaboration of Peter Scholze. MR 2590897, DOI 10.1017/CBO9780511674693
- Tathagata Basak, The complex Lorentzian Leech lattice and the Bimonster, J. Algebra 309 (2007), no. 1, 32–56. MR 2301231, DOI 10.1016/j.jalgebra.2006.05.033
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Niko Behrens, Singularities of ball quotients, Geom. Dedicata 159 (2012), 389–407. MR 2944539, DOI 10.1007/s10711-011-9666-0
- Nicolas Bergeron, Zhiyuan Li, John Millson, and Colette Moeglin, The Noether-Lefschetz conjecture and generalizations, Invent. Math. 208 (2017), no. 2, 501–552. MR 3639598, DOI 10.1007/s00222-016-0695-z
- Egbert Brieskorn, Sur les groupes de tresses [d’après V. I. Arnol′d], Séminaire Bourbaki, 24ème année (1971/1972), Lecture Notes in Math., Vol. 317, Springer, Berlin-New York, 1973, pp. Exp. No. 401, pp. 21–44 (French). MR 422674
- Joseph Bernstein and Ossip Schwarzman, Chevalley’s theorem for the complex crystallographic groups, J. Nonlinear Math. Phys. 13 (2006), no. 3, 323–351. MR 2249806, DOI 10.2991/jnmp.2006.13.3.2
- James A. Carlson, The one-motif of an algebraic surface, Compositio Math. 56 (1985), no. 3, 271–314. MR 814549
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, DOI 10.2307/1970801
- Sebastian Casalaina-Martin, Samuel Grushevsky, Klaus Hulek, and Radu Laza, Complete moduli of cubic threefolds and their intermediate Jacobians, Proc. Lond. Math. Soc. (3) 122 (2021), no. 2, 259–316. MR 4218962, DOI 10.1112/plms.12375
- Sebastian Casalaina-Martin, Samuel Grushevsky, Klaus Hulek, and Radu Laza, Extending the Prym map to toroidal compactifications of the moduli space of abelian varieties, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 3, 659–723. With an appendix by Mathieu Dutour Sikirić. MR 3612866, DOI 10.4171/JEMS/678
- S. Casalaina-Martin, S. Grushevsky, K. Hulek, and R. Laza, Non-isomorphic smooth compactifications of the moduli space of cubic surfaces, arXiv: 2207.03533, 2022.
- Sebastian Casalaina-Martin and Radu Laza, The moduli space of cubic threefolds via degenerations of the intermediate Jacobian, J. Reine Angew. Math. 633 (2009), 29–65. MR 2561195, DOI 10.1515/CRELLE.2009.059
- Igor V. Dolgachev and Shigeyuki Kond\B{o}, Moduli of $K3$ surfaces and complex ball quotients, Arithmetic and geometry around hypergeometric functions, Progr. Math., vol. 260, Birkhäuser, Basel, 2007, pp. 43–100. MR 2306149, DOI 10.1007/978-3-7643-8284-1_{3}
- Igor V. Dolgachev, Reflection groups in algebraic geometry, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 1, 1–60. MR 2358376, DOI 10.1090/S0273-0979-07-01190-1
- I. Dolgachev, B. van Geemen, and S. Kond\B{o}, A complex ball uniformization of the moduli space of cubic surfaces via periods of $K3$ surfaces, J. Reine Angew. Math. 588 (2005), 99–148. MR 2196731, DOI 10.1515/crll.2005.2005.588.99
- Robert Friedman, John W. Morgan, and Edward Witten, Principal $G$-bundles over elliptic curves, Math. Res. Lett. 5 (1998), no. 1-2, 97–118. MR 1618343, DOI 10.4310/MRL.1998.v5.n1.a8
- Robert Friedman, A new proof of the global Torelli theorem for $K3$ surfaces, Ann. of Math. (2) 120 (1984), no. 2, 237–269. MR 763907, DOI 10.2307/2006942
- Robert Friedman, On the ample cone of a rational surface with an anticanonical cycle, Algebra Number Theory 7 (2013), no. 6, 1481–1504. MR 3107570, DOI 10.2140/ant.2013.7.1481
- Patricio Gallardo, Matt Kerr, and Luca Schaffler, Geometric interpretation of toroidal compactifications of moduli of points in the line and cubic surfaces, Adv. Math. 381 (2021), Paper No. 107632, 48. MR 4214398, DOI 10.1016/j.aim.2021.107632
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- Samuel Grushevsky and Klaus Hulek, The intersection cohomology of the Satake compactification of $\mathcal A_g$ for $g \leq 4$, Math. Ann. 369 (2017), no. 3-4, 1353–1381. MR 3713544, DOI 10.1007/s00208-016-1491-1
- Mark Gross, Paul Hacking, and Sean Keel, Moduli of surfaces with an anti-canonical cycle, Compos. Math. 151 (2015), no. 2, 265–291. MR 3314827, DOI 10.1112/S0010437X14007611
- Brendan Hassett and Donghoon Hyeon, Log canonical models for the moduli space of curves: the first divisorial contraction, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4471–4489. MR 2500894, DOI 10.1090/S0002-9947-09-04819-3
- Brendan Hassett and Donghoon Hyeon, Log minimal model program for the moduli space of stable curves: the first flip, Ann. of Math. (2) 177 (2013), no. 3, 911–968. MR 3034291, DOI 10.4007/annals.2013.177.3.3
- Michael Hentschel, Aloys Krieg, and Gabriele Nebe, On the classification of lattices over $\Bbb Q(\sqrt {-3})$, which are even unimodular $\Bbb Z$-lattices, Abh. Math. Semin. Univ. Hambg. 80 (2010), no. 2, 183–192. MR 2734684, DOI 10.1007/s12188-010-0043-y
- Paul Hacking, Sean Keel, and Jenia Tevelev, Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces, Invent. Math. 178 (2009), no. 1, 173–227. MR 2534095, DOI 10.1007/s00222-009-0199-1
- Klaus Hulek and Orsola Tommasi, The topology of $\mathcal A_g$ and its compactifications, Geometry of moduli, Abel Symp., vol. 14, Springer, Cham, 2018, pp. 135–193. With an appendix by Olivier Taïbi. MR 3968046
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741, DOI 10.2307/j.ctv10vm2m8
- Frances Clare Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. (2) 122 (1985), no. 1, 41–85. MR 799252, DOI 10.2307/1971369
- Frances Kirwan, Rational intersection cohomology of quotient varieties, Invent. Math. 86 (1986), no. 3, 471–505. MR 860678, DOI 10.1007/BF01389264
- Frances Kirwan, Moduli spaces of degree $d$ hypersurfaces in $\textbf {P}_n$, Duke Math. J. 58 (1989), no. 1, 39–78. MR 1016413, DOI 10.1215/S0012-7094-89-05804-3
- Frances Kirwan and Ronnie Lee, The cohomology of moduli spaces of $K3$ surfaces of degree $2$. I, Topology 28 (1989), no. 4, 495–516. MR 1030990, DOI 10.1016/0040-9383(89)90008-6
- Frances Kirwan and Ronnie Lee, The cohomology of moduli spaces of $K3$ surfaces of degree $2$. II, Proc. London Math. Soc. (3) 58 (1989), no. 3, 559–582. MR 988103, DOI 10.1112/plms/s3-58.3.559
- F. C. Kirwan, R. Lee, and S. H. Weintraub, Quotients of the complex ball by discrete groups, Pacific J. Math. 130 (1987), no. 1, 115–141. MR 910656
- Radu Laza, Deformations of singularities and variation of GIT quotients, Trans. Amer. Math. Soc. 361 (2009), no. 4, 2109–2161. MR 2465831, DOI 10.1090/S0002-9947-08-04660-6
- Radu Laza, The moduli space of cubic fourfolds via the period map, Ann. of Math. (2) 172 (2010), no. 1, 673–711. MR 2680429, DOI 10.4007/annals.2010.172.673
- Radu Laza and Kieran G. O’Grady, GIT versus Baily-Borel compactification for quartic $K3$ surfaces, Geometry of moduli, Abel Symp., vol. 14, Springer, Cham, 2018, pp. 217–283. MR 3968048
- Radu Laza and Kieran O’Grady, Birational geometry of the moduli space of quartic $K3$ surfaces, Compos. Math. 155 (2019), no. 9, 1655–1710. MR 3993801, DOI 10.1112/s0010437x19007516
- Eduard Looijenga, Compactifications defined by arrangements. I. The ball quotient case, Duke Math. J. 118 (2003), no. 1, 151–187. MR 1978885, DOI 10.1215/S0012-7094-03-11816-5
- Eduard Looijenga, Root systems and elliptic curves, Invent. Math. 38 (1976/77), no. 1, 17–32. MR 466134, DOI 10.1007/BF01390167
- G. I. Lehrer and Louis Solomon, On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes, J. Algebra 104 (1986), no. 2, 410–424. MR 866785, DOI 10.1016/0021-8693(86)90225-5
- Eduard Looijenga and Rogier Swierstra, The period map for cubic threefolds, Compos. Math. 143 (2007), no. 4, 1037–1049. MR 2339838, DOI 10.1112/S0010437X0700293X
- Gustav I. Lehrer and Donald E. Taylor, Unitary reflection groups, Australian Mathematical Society Lecture Series, vol. 20, Cambridge University Press, Cambridge, 2009. MR 2542964
- Yuchen Liu and Chenyang Xu, K-stability of cubic threefolds, Duke Math. J. 168 (2019), no. 11, 2029–2073. MR 3992032, DOI 10.1215/00127094-2019-0006
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430–436. MR 77932, DOI 10.2307/1970012
- Chung Pang Mok, Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 235 (2015), no. 1108, vi+248. MR 3338302, DOI 10.1090/memo/1108
- Shouhei Ma, Hisanori Ohashi, and Shingo Taki, Rationality of the moduli spaces of Eisenstein $K3$ surfaces, Trans. Amer. Math. Soc. 367 (2015), no. 12, 8643–8679. MR 3403068, DOI 10.1090/tran/6349
- Shigeru Mukai, An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, vol. 81, Cambridge University Press, Cambridge, 2003. Translated from the 1998 and 2000 Japanese editions by W. M. Oxbury. MR 2004218
- Isao Naruki, Cross ratio variety as a moduli space of cubic surfaces, Proc. London Math. Soc. (3) 45 (1982), no. 1, 1–30. With an appendix by Eduard Looijenga. MR 662660, DOI 10.1112/plms/s3-45.1.1
- V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
- Henry C. Pinkham, Deformations of algebraic varieties with $G_{m}$ action, Astérisque, No. 20, Société Mathématique de France, Paris, 1974. MR 376672
- Zinovy Reichstein, Stability and equivariant maps, Invent. Math. 96 (1989), no. 2, 349–383. MR 989701, DOI 10.1007/BF01393967
- Francesco Scattone, On the compactification of moduli spaces for algebraic $K3$ surfaces, Mem. Amer. Math. Soc. 70 (1987), no. 374, x+86. MR 912636, DOI 10.1090/memo/0374
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Mutsumi Yokoyama, Stability of cubic 3-folds, Tokyo J. Math. 25 (2002), no. 1, 85–105. MR 1908216, DOI 10.3836/tjm/1244208939
- Jun Zhang, Geometric compactification of moduli space of cubic surfaces and Kirwan blowup, ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)–Rice University. MR 2708725