
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Percolation on Triangulations: A Bijective Path to Liouville Quantum Gravity
About this Title
Olivier Bernardi, Nina Holden and Xin Sun
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 289, Number 1440
ISBNs: 978-1-4704-6699-2 (print); 978-1-4704-7626-7 (online)
DOI: https://doi.org/10.1090/memo/1440
Published electronically: August 24, 2023
Keywords: Liouville quantum gravity,
Schramm-Loewner evolutions,
mating of trees,
percolation,
random planar maps,
triangulations,
random walks,
Kreweras walks,
planar Brownian motion,
bijection
Table of Contents
Chapters
- 1. Introduction
- 2. A bijection between Kreweras walks and percolated triangulations
- 3. Discrete dictionary I: Spine-looptrees decomposition
- 4. Discrete dictionary II: Exploration tree
- 5. Discrete dictionary III: tree of clusters, envelope excursions, and pivotal points
- 6. Proofs of the bijective correspondences
- 7. The mating-of-trees correspondence
- 8. Convergence of percolated triangulations to $CLE_6$ on $\sqrt {8/3}$-LQG
- 9. Proofs of the scaling limit results
- A. Recovering the DFS tree and the walk from the percolated UIPT
Abstract
We set the foundation for a series of works aimed at proving strong relations between uniform random planar maps and Liouville quantum gravity (LQG). Our method relies on a bijective encoding of site-percolated planar triangulations by certain 2D lattice paths. Our bijection parallels in the discrete setting the mating-of-trees framework of LQG and Schramm-Loewner evolutions (SLE) introduced by Duplantier, Miller, and Sheffield. Combining these two correspondences allows us to relate uniform site-percolated triangulations to $\sqrt {8/3}$-LQG and SLE$_6$. In particular, we establish the convergence of several functionals of the percolation model to continuous random objects defined in terms of $\sqrt {8/3}$-LQG and SLE$_6$. For instance, we show that the exploration tree of the percolation converges to a branching SLE$_6$, and that the collection of percolation cycles converges to the conformal loop ensemble CLE$_6$. We also prove convergence of counting measure on the pivotal points of the percolation. Our results play an essential role in several other works, including a program for showing convergence of the conformal structure of uniform triangulations and works which study the behavior of random walk on the uniform infinite planar triangulation.- Louigi Addario-Berry and Marie Albenque, The scaling limit of random simple triangulations and random simple quadrangulations, Ann. Probab. 45 (2017), no. 5, 2767–2825. MR 3706731, DOI 10.1214/16-AOP1124
- Omer Angel and Nicolas Curien, Percolations on random maps I: Half-plane models, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 2, 405–431 (English, with English and French summaries). MR 3335009, DOI 10.1214/13-AIHP583
- Juhan Aru, Yichao Huang, and Xin Sun, Two perspectives of the 2D unit area quantum sphere and their equivalence, Comm. Math. Phys. 356 (2017), no. 1, 261–283. MR 3694028, DOI 10.1007/s00220-017-2979-6
- Marie Albenque, Nina Holden, and Xin Sun, Scaling limit of triangulations of polygons, Electron. J. Probab. 25 (2020), Paper No. 135, 43. MR 4171388, DOI 10.1214/20-ejp537
- David Aldous, The continuum random tree. I, Ann. Probab. 19 (1991), no. 1, 1–28. MR 1085326
- David Aldous, The continuum random tree. II. An overview, Stochastic analysis (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 167, Cambridge Univ. Press, Cambridge, 1991, pp. 23–70. MR 1166406, DOI 10.1017/CBO9780511662980.003
- David Aldous, The continuum random tree. III, Ann. Probab. 21 (1993), no. 1, 248–289. MR 1207226
- O. Angel, Growth and percolation on the uniform infinite planar triangulation, Geom. Funct. Anal. 13 (2003), no. 5, 935–974. MR 2024412, DOI 10.1007/s00039-003-0436-5
- O. Angel. Scaling of Percolation on Infinite Planar Maps, I. ArXiv Mathematics e-prints, December 2005, arXiv:math/0501006.
- Juhan Aru, Gaussian multiplicative chaos through the lens of the 2D Gaussian free field, Markov Process. Related Fields 26 (2020), no. 1, 17–56. MR 4237161
- Omer Angel and Oded Schramm, Uniform infinite planar triangulations, Comm. Math. Phys. 241 (2003), no. 2-3, 191–213. MR 2013797, DOI 10.1007/978-1-4419-9675-6_{1}6
- O. Bernardi, M. Bousquet-Mélou, and K. Raschel, Counting quadrant walks via Tutte’s invariant method (extended abstract), 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), Discrete Math. Theor. Comput. Sci. Proc., BC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, [2016] ©2016, pp. 1–13 (English, with English and French summaries). MR 4111349
- J. Bouttier, P. Di Francesco, and E. Guitter, Planar maps as labeled mobiles, Electron. J. Combin. 11 (2004), no. 1, Research Paper 69, 27. MR 2097335, DOI 10.37236/1822
- Stéphane Benoist, Natural parametrization of SLE: the Gaussian free field point of view, Electron. J. Probab. 23 (2018), Paper No. 103, 16. MR 3870446, DOI 10.1214/18-ejp232
- Jean Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. MR 1406564
- Jean Bertoin, Subordinators: examples and applications, Lectures on probability theory and statistics (Saint-Flour, 1997) Lecture Notes in Math., vol. 1717, Springer, Berlin, 1999, pp. 1–91. MR 1746300, DOI 10.1007/978-3-540-48115-7_{1}
- Olivier Bernardi, Bijective counting of Kreweras walks and loopless triangulations, J. Combin. Theory Ser. A 114 (2007), no. 5, 931–956. MR 2333142, DOI 10.1016/j.jcta.2006.09.009
- Nathanaël Berestycki, An elementary approach to Gaussian multiplicative chaos, Electron. Commun. Probab. 22 (2017), Paper No. 27, 12. MR 3652040, DOI 10.1214/17-ECP58
- Jérémie Bettinelli, Scaling limits for random quadrangulations of positive genus, Electron. J. Probab. 15 (2010), no. 52, 1594–1644. MR 2735376, DOI 10.1214/EJP.v15-810
- Jérémie Bettinelli, The topology of scaling limits of positive genus random quadrangulations, Ann. Probab. 40 (2012), no. 5, 1897–1944. MR 3025705, DOI 10.1214/11-AOP675
- Olivier Bernardi and Éric Fusy, Unified bijections for maps with prescribed degrees and girth, J. Combin. Theory Ser. A 119 (2012), no. 6, 1351–1387. MR 2915651, DOI 10.1016/j.jcta.2012.03.007
- A. Bostan, I. Kurkova, and K. Raschel, A human proof of Gessel’s lattice path conjecture, Trans. Amer. Math. Soc. 369 (2017), no. 2, 1365–1393. MR 3572277, DOI 10.1090/tran/6804
- Mireille Bousquet-Mélou, Walks in the quarter plane: Kreweras’ algebraic model, Ann. Appl. Probab. 15 (2005), no. 2, 1451–1491. MR 2134111, DOI 10.1214/105051605000000052
- Mireille Bousquet-Mélou, An elementary solution of Gessel’s walks in the quadrant, Adv. Math. 303 (2016), 1171–1189. MR 3552547, DOI 10.1016/j.aim.2016.08.038
- Jérémie Bettinelli and Grégory Miermont, Compact Brownian surfaces I: Brownian disks, Probab. Theory Related Fields 167 (2017), no. 3-4, 555–614. MR 3627425, DOI 10.1007/s00440-016-0752-y
- Robert Burton and Robin Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Probab. 21 (1993), no. 3, 1329–1371. MR 1235419
- N. Berestycki, S. Sheffield, and X. Sun. Equivalence of Liouville measure and Gaussian free field. ArXiv e-prints, October 2014, arXiv:1410.5407.
- John L. Cardy, Critical percolation in finite geometries, J. Phys. A 25 (1992), no. 4, L201–L206. MR 1151081
- L. Chaumont and R. A. Doney, Invariance principles for local times at the maximum of random walks and Lévy processes, Ann. Probab. 38 (2010), no. 4, 1368–1389. MR 2663630, DOI 10.1214/09-AOP512
- Dmitry Chelkak, Hugo Duminil-Copin, Clément Hongler, Antti Kemppainen, and Stanislav Smirnov, Convergence of Ising interfaces to Schramm’s SLE curves, C. R. Math. Acad. Sci. Paris 352 (2014), no. 2, 157–161 (English, with English and French summaries). MR 3151886, DOI 10.1016/j.crma.2013.12.002
- Nicolas Curien and Igor Kortchemski, Random stable looptrees, Electron. J. Probab. 19 (2014), no. 108, 35. MR 3286462, DOI 10.1214/EJP.v19-2732
- Nicolas Curien and Igor Kortchemski, Percolation on random triangulations and stable looptrees, Probab. Theory Related Fields 163 (2015), no. 1-2, 303–337. MR 3405619, DOI 10.1007/s00440-014-0593-5
- Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to algorithms, The MIT Electrical Engineering and Computer Science Series, MIT Press, Cambridge, MA; McGraw-Hill Book Co., New York, 1990. MR 1066870
- Federico Camia and Charles M. Newman, Two-dimensional critical percolation: the full scaling limit, Comm. Math. Phys. 268 (2006), no. 1, 1–38. MR 2249794, DOI 10.1007/s00220-006-0086-1
- Dmitry Chelkak and Stanislav Smirnov, Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math. 189 (2012), no. 3, 515–580. MR 2957303, DOI 10.1007/s00222-011-0371-2
- François David, Antti Kupiainen, Rémi Rhodes, and Vincent Vargas, Liouville quantum gravity on the Riemann sphere, Comm. Math. Phys. 342 (2016), no. 3, 869–907. MR 3465434, DOI 10.1007/s00220-016-2572-4
- Bertrand Duplantier, Liouville quantum gravity, KPZ and Schramm-Loewner evolution, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, Kyung Moon Sa, Seoul, 2014, pp. 1035–1061. MR 3729063
- François David, Rémi Rhodes, and Vincent Vargas, Liouville quantum gravity on complex tori, J. Math. Phys. 57 (2016), no. 2, 022302, 25. MR 3450564, DOI 10.1063/1.4938107
- Bertrand Duplantier and Scott Sheffield, Liouville quantum gravity and KPZ, Invent. Math. 185 (2011), no. 2, 333–393. MR 2819163, DOI 10.1007/s00222-010-0308-1
- Julien Dubédat, Duality of Schramm-Loewner evolutions, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 697–724 (English, with English and French summaries). MR 2571956, DOI 10.24033/asens.2107
- Julien Dubédat, SLE and the free field: partition functions and couplings, J. Amer. Math. Soc. 22 (2009), no. 4, 995–1054. MR 2525778, DOI 10.1090/S0894-0347-09-00636-5
- Thomas Duquesne, A limit theorem for the contour process of conditioned Galton-Watson trees, Ann. Probab. 31 (2003), no. 2, 996–1027. MR 1964956, DOI 10.1214/aop/1048516543
- Denis Denisov and Vitali Wachtel, Random walks in cones, Ann. Probab. 43 (2015), no. 3, 992–1044. MR 3342657, DOI 10.1214/13-AOP867
- Guy Fayolle, Roudolf Iasnogorodski, and Vadim Malyshev, Random walks in the quarter-plane, Applications of Mathematics (New York), vol. 40, Springer-Verlag, Berlin, 1999. Algebraic methods, boundary value problems and applications. MR 1691900, DOI 10.1007/978-3-642-60001-2
- Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009. MR 2483235, DOI 10.1017/CBO9780511801655
- Ira M. Gessel, A probabilistic method for lattice path enumeration, J. Statist. Plann. Inference 14 (1986), no. 1, 49–58. MR 845914, DOI 10.1016/0378-3758(86)90009-1
- Ewain Gwynne and Tom Hutchcroft, Anomalous diffusion of random walk on random planar maps, Probab. Theory Related Fields 178 (2020), no. 1-2, 567–611. MR 4146545, DOI 10.1007/s00440-020-00986-7
- Ewain Gwynne, Nina Holden, Jason Miller, and Xin Sun, Brownian motion correlation in the peanosphere for $\kappa >8$, Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017), no. 4, 1866–1889 (English, with English and French summaries). MR 3729638, DOI 10.1214/16-AIHP774
- E. Gwynne, N. Holden, and X. Sun. Joint scaling limit of a bipolar-oriented triangulation and its dual in the peanosphere sense. ArXiv e-prints, March 2016, arXiv:1603.01194.
- Ewain Gwynne, Nina Holden, and Xin Sun, A distance exponent for Liouville quantum gravity, Probab. Theory Related Fields 173 (2019), no. 3-4, 931–997. MR 3936149, DOI 10.1007/s00440-018-0846-9
- Ewain Gwynne, Nina Holden, and Xin Sun, Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense, Electron. J. Probab. 26 (2021), Paper No. 94, 58. MR 4278605, DOI 10.1214/21-ejp659
- E. Gwynne, N. Holden, and X. Sun. Mating of trees for random planar maps and Liouville quantum gravity: a survey. arXiv e-prints, page arXiv:1910.04713, October 2019, 1910.04713.
- Ewain Gwynne, Nina Holden, and Xin Sun, A mating-of-trees approach for graph distances in random planar maps, Probab. Theory Related Fields 177 (2020), no. 3-4, 1043–1102. MR 4126936, DOI 10.1007/s00440-020-00969-8
- Christophe Garban, Nina Holden, Avelio Sepúlveda, and Xin Sun, Liouville dynamical percolation, Probab. Theory Related Fields 180 (2021), no. 3-4, 621–678. MR 4288329, DOI 10.1007/s00440-021-01057-1
- Ewain Gwynne, Adrien Kassel, Jason Miller, and David B. Wilson, Active spanning trees with bending energy on planar maps and SLE-decorated Liouville quantum gravity for $\kappa > 8$, Comm. Math. Phys. 358 (2018), no. 3, 1065–1115. MR 3778352, DOI 10.1007/s00220-018-3104-1
- E. Gwynne and J. Miller. Characterizations of SLE$_{\kappa }$ for $\kappa \in (4,8)$ on Liouville quantum gravity. ArXiv e-prints, January 2017, arXiv:1701.05174.
- Ewain Gwynne and Jason Miller, Random walk on random planar maps: spectral dimension, resistance and displacement, Ann. Probab. 49 (2021), no. 3, 1097–1128. MR 4255139, DOI 10.1214/20-aop1471
- Ewain Gwynne and Jason Miller, Chordal $\textrm {SLE}_6$ explorations of a quantum disk, Electron. J. Probab. 23 (2018), Paper No. 66, 24. MR 3835472, DOI 10.1214/18-EJP161
- Ewain Gwynne, Jason Miller, and Scott Sheffield, The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity, Ann. Probab. 49 (2021), no. 4, 1677–1717. MR 4260465, DOI 10.1214/20-aop1487
- Ewain Gwynne, Cheng Mao, and Xin Sun, Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map I: Cone times, Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019), no. 1, 1–60. MR 3901640, DOI 10.1214/17-aihp874
- Christophe Garban, Gábor Pete, and Oded Schramm, Pivotal, cluster, and interface measures for critical planar percolation, J. Amer. Math. Soc. 26 (2013), no. 4, 939–1024. MR 3073882, DOI 10.1090/S0894-0347-2013-00772-9
- Christophe Garban, Gábor Pete, and Oded Schramm, The scaling limits of near-critical and dynamical percolation, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 5, 1195–1268. MR 3790067, DOI 10.4171/JEMS/786
- Ewain Gwynne and Xin Sun, Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map II: local estimates and empty reduced word exponent, Electron. J. Probab. 22 (2017), Paper No. 45, 56. MR 3661659, DOI 10.1214/17-EJP64
- Ewain Gwynne and Xin Sun, Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map II: local estimates and empty reduced word exponent, Electron. J. Probab. 22 (2017), Paper No. 45, 56. MR 3661659, DOI 10.1214/17-EJP64
- N. Holden, X. Li, and X. Sun. Natural parametrization of percolation interface and pivotal points. ArXiv e-prints, April 2018, 1804.07286.
- Nina Holden and Xin Sun, SLE as a mating of trees in Euclidean geometry, Comm. Math. Phys. 364 (2018), no. 1, 171–201. MR 3861296, DOI 10.1007/s00220-018-3149-1
- N. Holden and X. Sun. Convergence of uniform triangulations under the Cardy embedding. ArXiv e-prints, May 2019, arXiv:1905.13207.
- Manuel Kauers, Christoph Koutschan, and Doron Zeilberger, Proof of Ira Gessel’s lattice path conjecture, Proc. Natl. Acad. Sci. USA 106 (2009), no. 28, 11502–11505. MR 2538821, DOI 10.1073/pnas.0901678106
- Richard Kenyon, Jason Miller, Scott Sheffield, and David B. Wilson, Bipolar orientations on planar maps and $\textrm {SLE}_{12}$, Ann. Probab. 47 (2019), no. 3, 1240–1269. MR 3945746, DOI 10.1214/18-AOP1282
- Igor Kortchemski, A simple proof of Duquesne’s theorem on contour processes of conditioned Galton-Watson trees, Séminaire de Probabilités XLV, Lecture Notes in Math., vol. 2078, Springer, Cham, 2013, pp. 537–558. MR 3185928, DOI 10.1007/978-3-319-00321-4_{2}0
- V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, Fractal structure of $2$D-quantum gravity, Modern Phys. Lett. A 3 (1988), no. 8, 819–826. MR 947880, DOI 10.1142/S0217732388000982
- Irina Kurkova and Kilian Raschel, On the functions counting walks with small steps in the quarter plane, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 69–114. MR 3090255, DOI 10.1007/s10240-012-0045-7
- G. Kreweras. Sur une classe de problèmes liés au treillis des partitions d’entiers. Cahier du B.U.R.O., 6:5–105, 1965.
- A. Kemppainen and S. Smirnov. Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE. ArXiv e-prints, September 2016, 1609.08527.
- Manuel Kauers and Doron Zeilberger, The quasi-holonomic ansatz and restricted lattice walks, J. Difference Equ. Appl. 14 (2008), no. 10-11, 1119–1126. MR 2447188, DOI 10.1080/10236190802332084
- Gregory F. Lawler, Conformally invariant processes in the plane, Mathematical Surveys and Monographs, vol. 114, American Mathematical Society, Providence, RI, 2005. MR 2129588, DOI 10.1090/surv/114
- Jean-François Le Gall, The topological structure of scaling limits of large planar maps, Invent. Math. 169 (2007), no. 3, 621–670. MR 2336042, DOI 10.1007/s00222-007-0059-9
- Jean-François Le Gall, Uniqueness and universality of the Brownian map, Ann. Probab. 41 (2013), no. 4, 2880–2960. MR 3112934, DOI 10.1214/12-AOP792
- Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. 32 (2004), no. 1B, 939–995. MR 2044671, DOI 10.1214/aop/1079021469
- Y. Li, X. Sun, and S. S. Watson. Schnyder woods, SLE(16), and Liouville quantum gravity. ArXiv e-prints, May 2017, arXiv:1705.03573.
- Gregory F. Lawler and Fredrik Viklund, Convergence of loop-erased random walk in the natural parameterization, Duke Math. J. 170 (2021), no. 10, 2289–2370. MR 4291423, DOI 10.1215/00127094-2020-0075
- Grégory Miermont, The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math. 210 (2013), no. 2, 319–401. MR 3070569, DOI 10.1007/s11511-013-0096-8
- Jean-François Marckert and Abdelkader Mokkadem, Limit of normalized quadrangulations: the Brownian map, Ann. Probab. 34 (2006), no. 6, 2144–2202. MR 2294979, DOI 10.1214/009117906000000557
- Jason Miller and Scott Sheffield, Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding, Ann. Probab. 49 (2021), no. 6, 2732–2829. MR 4348679, DOI 10.1214/21-aop1506
- Jason Miller and Scott Sheffield, Liouville quantum gravity and the Brownian map III: the conformal structure is determined, Probab. Theory Related Fields 179 (2021), no. 3-4, 1183–1211. MR 4242633, DOI 10.1007/s00440-021-01026-8
- Jason Miller and Scott Sheffield, Imaginary geometry I: interacting SLEs, Probab. Theory Related Fields 164 (2016), no. 3-4, 553–705. MR 3477777, DOI 10.1007/s00440-016-0698-0
- Jason Miller and Scott Sheffield, Imaginary geometry II: reversibility of $\textrm {SLE}_\kappa (\rho _1;\rho _2)$ for $\kappa \in (0,4)$, Ann. Probab. 44 (2016), no. 3, 1647–1722. MR 3502592, DOI 10.1214/14-AOP943
- Jason Miller and Scott Sheffield, Imaginary geometry III: reversibility of $\rm SLE_\kappa$ for $\kappa \in (4,8)$, Ann. of Math. (2) 184 (2016), no. 2, 455–486. MR 3548530, DOI 10.4007/annals.2016.184.2.3
- Jason Miller and Scott Sheffield, Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees, Probab. Theory Related Fields 169 (2017), no. 3-4, 729–869. MR 3719057, DOI 10.1007/s00440-017-0780-2
- Jason Miller and Scott Sheffield, Liouville quantum gravity spheres as matings of finite-diameter trees, Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019), no. 3, 1712–1750 (English, with English and French summaries). MR 4010949, DOI 10.1214/18-aihp932
- Jason Miller and Scott Sheffield, Liouville quantum gravity and the Brownian map I: the $\textrm {QLE}(8/3,0)$ metric, Invent. Math. 219 (2020), no. 1, 75–152. MR 4050102, DOI 10.1007/s00222-019-00905-1
- R. C. Mullin, On the enumeration of tree-rooted maps, Canadian J. Math. 19 (1967), 174–183. MR 205882, DOI 10.4153/CJM-1967-010-x
- Jason Miller and Hao Wu, Intersections of SLE paths: the double and cut point dimension of SLE, Probab. Theory Related Fields 167 (2017), no. 1-2, 45–105. MR 3602842, DOI 10.1007/s00440-015-0677-x
- A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981), no. 3, 207–210. MR 623209, DOI 10.1016/0370-2693(81)90743-7
- A. M. Polyakov, Quantum geometry of fermionic strings, Phys. Lett. B 103 (1981), no. 3, 211–213. MR 623210, DOI 10.1016/0370-2693(81)90744-9
- A. Polyakov, Two-dimensional quantum gravity. Superconductivity at high $T_C$, Champs, cordes et phénomènes critiques (Les Houches, 1988) North-Holland, Amsterdam, 1990, pp. 305–368. MR 1052937
- Dominique Poulalhon and Gilles Schaeffer, A bijection for triangulations of a polygon with interior points and multiple edges, Theoret. Comput. Sci. 307 (2003), no. 2, 385–401. Random generation of combinatorial objects and bijective combinatorics. MR 2022585, DOI 10.1016/S0304-3975(03)00226-3
- Loïc Richier, The incipient infinite cluster of the uniform infinite half-planar triangulation, Electron. J. Probab. 23 (2018), Paper No. 89, 38. MR 3858917, DOI 10.1214/18-EJP218
- Steffen Rohde and Oded Schramm, Basic properties of SLE, Ann. of Math. (2) 161 (2005), no. 2, 883–924. MR 2153402, DOI 10.4007/annals.2005.161.883
- Rémi Rhodes and Vincent Vargas, Gaussian multiplicative chaos and applications: a review, Probab. Surv. 11 (2014), 315–392. MR 3274356, DOI 10.1214/13-PS218
- G. Schaeffer. Conjugaison d’arbres et cartes combinatoires aléatoires. PhD thesis, Université Bordeaux I, 1998.
- Oded Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221–288. MR 1776084, DOI 10.1007/BF02803524
- Scott Sheffield, Gaussian free fields for mathematicians, Probab. Theory Related Fields 139 (2007), no. 3-4, 521–541. MR 2322706, DOI 10.1007/s00440-006-0050-1
- Scott Sheffield, Exploration trees and conformal loop ensembles, Duke Math. J. 147 (2009), no. 1, 79–129. MR 2494457, DOI 10.1215/00127094-2009-007
- Scott Sheffield, Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab. 44 (2016), no. 5, 3474–3545. MR 3551203, DOI 10.1214/15-AOP1055
- Scott Sheffield, Quantum gravity and inventory accumulation, Ann. Probab. 44 (2016), no. 6, 3804–3848. MR 3572324, DOI 10.1214/15-AOP1061
- Michio Shimura, Excursions in a cone for two-dimensional Brownian motion, J. Math. Kyoto Univ. 25 (1985), no. 3, 433–443. MR 807490, DOI 10.1215/kjm/1250521064
- Stanislav Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239–244 (English, with English and French summaries). MR 1851632, DOI 10.1016/S0764-4442(01)01991-7
- Oded Schramm and Scott Sheffield, Contour lines of the two-dimensional discrete Gaussian free field, Acta Math. 202 (2009), no. 1, 21–137. MR 2486487, DOI 10.1007/s11511-009-0034-y
- Oded Schramm and Stanislav Smirnov, On the scaling limits of planar percolation [MR2884873], Selected works of Oded Schramm. Volume 1, 2, Sel. Works Probab. Stat., Springer, New York, 2011, pp. 1193–1247. With an appendix by Christophe Garban. MR 2883400, DOI 10.1007/978-1-4419-9675-6_{3}5
- Stanislav Smirnov and Wendelin Werner, Critical exponents for two-dimensional percolation, Math. Res. Lett. 8 (2001), no. 5-6, 729–744. MR 1879816, DOI 10.4310/MRL.2001.v8.n6.a4
- Wendelin Werner, Random planar curves and Schramm-Loewner evolutions, Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1840, Springer, Berlin, 2004, pp. 107–195. MR 2079672, DOI 10.1007/978-3-540-39982-7_{2}