Strichartz estimates for the Schrödinger equation with a measure-valued potential
HTML articles powered by AMS MathViewer
- by M. Burak Erdoğan, Michael Goldberg and William R. Green HTML | PDF
- Proc. Amer. Math. Soc. Ser. B 8 (2021), 336-348
Abstract:
We prove Strichartz estimates for the Schrödinger equation in $\mathbb {R}^n$, $n\geq 3$, with a Hamiltonian $H = -\Delta + \mu$. The perturbation $\mu$ is a compactly supported measure in $\mathbb {R}^n$ with dimension $\alpha > n-(1+\frac {1}{n-1})$. The main intermediate step is a local decay estimate in $L^2(\mu )$ for both the free and perturbed Schrödinger evolution.References
- S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. Analyse Math. 30 (1976), 1–38. MR 466902, DOI 10.1007/BF02786703
- Horia D. Cornean, Alessandro Michelangeli, and Kenji Yajima, Two-dimensional Schrödinger operators with point interactions: threshold expansions, zero modes and $L^p$-boundedness of wave operators, Rev. Math. Phys. 31 (2019), no. 4, 1950012, 32. MR 3939663, DOI 10.1142/S0129055X19500120
- Piero D’Ancona, Vittoria Pierfelice, and Alessandro Teta, Dispersive estimate for the Schrödinger equation with point interactions, Math. Methods Appl. Sci. 29 (2006), no. 3, 309–323. MR 2191432, DOI 10.1002/mma.682
- Gianfausto Dell’Antonio, Alessandro Michelangeli, Raffaele Scandone, and Kenji Yajima, $L^p$-boundedness of wave operators for the three-dimensional multi-centre point interaction, Ann. Henri Poincaré 19 (2018), no. 1, 283–322. MR 3743762, DOI 10.1007/s00023-017-0628-4
- Xiumin Du and Ruixiang Zhang, Sharp $L^2$ estimates of the Schrödinger maximal function in higher dimensions, Ann. of Math. (2) 189 (2019), no. 3, 837–861. MR 3961084, DOI 10.4007/annals.2019.189.3.4
- M. Burak Erdoğan, Michael Goldberg, and Wilhelm Schlag, Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in $\Bbb R^3$, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 507–531. MR 2390334, DOI 10.4171/JEMS/120
- M. Burak Erdoğan and William R. Green, Dispersive estimates for the Schrödinger equation for $C^{\frac {n-3}{2}}$ potentials in odd dimensions, Int. Math. Res. Not. IMRN 13 (2010), 2532–2565. MR 2669658
- J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 4, 309–327 (English, with French summary). MR 801582, DOI 10.1016/S0294-1449(16)30399-7
- Michael Goldberg, Strichartz estimates for the Schrödinger equation with time-periodic $L^{n/2}$ potentials, J. Funct. Anal. 256 (2009), no. 3, 718–746. MR 2484934, DOI 10.1016/j.jfa.2008.11.005
- Michael Goldberg, Dispersive estimates for Schrödinger operators with measure-valued potentials in $\Bbb R^3$, Indiana Univ. Math. J. 61 (2012), no. 6, 2123–2141. MR 3129105, DOI 10.1512/iumj.2012.61.4786
- Michael Goldberg, The Helmholtz equation with $L^p$ data and Bochner-Riesz multipliers, Math. Res. Lett. 23 (2016), no. 6, 1665–1679. MR 3621102, DOI 10.4310/MRL.2016.v23.n6.a5
- Michael Goldberg and Monica Visan, A counterexample to dispersive estimates for Schrödinger operators in higher dimensions, Comm. Math. Phys. 266 (2006), no. 1, 211–238. MR 2231971, DOI 10.1007/s00220-006-0013-5
- J.-L. Journé, A. Soffer, and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math. 44 (1991), no. 5, 573–604. MR 1105875, DOI 10.1002/cpa.3160440504
- Tosio Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1965/66), 258–279. MR 190801, DOI 10.1007/BF01360915
- Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. MR 1646048, DOI 10.1353/ajm.1998.0039
- Herbert Koch and Daniel Tataru, Carleman estimates and absence of embedded eigenvalues, Comm. Math. Phys. 267 (2006), no. 2, 419–449. MR 2252331, DOI 10.1007/s00220-006-0060-y
- Renato Lucà and Keith M. Rogers, Average decay of the Fourier transform of measures with applications, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 2, 465–506. MR 3896208, DOI 10.4171/JEMS/842
- Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0493420
- Igor Rodnianski and Wilhelm Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math. 155 (2004), no. 3, 451–513. MR 2038194, DOI 10.1007/s00222-003-0325-4
- Martin Schechter, Spectra of partial differential operators, North-Holland Series in Applied Mathematics and Mechanics, Vol. 14, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1971. MR 0447834
- Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714. MR 512086
Additional Information
- M. Burak Erdoğan
- Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
- MR Author ID: 629150
- Email: berdogan@illinois.edu
- Michael Goldberg
- Affiliation: Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221
- MR Author ID: 674280
- ORCID: 0000-0003-1039-6865
- Email: goldbeml@ucmail.uc.edu
- William R. Green
- Affiliation: Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, Indiana 47803
- MR Author ID: 906481
- ORCID: 0000-0001-9399-8380
- Email: green@rose-hulman.edu
- Received by editor(s): August 7, 2019
- Published electronically: November 22, 2021
- Additional Notes: The first author was partially supported by NSF grant DMS-1501041.
The second author was supported by Simons Foundation Grant 281057.
The third author was supported by Simons Foundation Grant 511825. - Communicated by: Alexander Iosevich
- © Copyright 2021 by the authors under Creative Commons Attribution-Noncommercial 3.0 License (CC BY NC 3.0)
- Journal: Proc. Amer. Math. Soc. Ser. B 8 (2021), 336-348
- MSC (2020): Primary 35Q40; Secondary 42B15
- DOI: https://doi.org/10.1090/bproc/79
- MathSciNet review: 4343929