Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology

Authors: Leonard E. Baum and J. A. Eagon
Journal: Bull. Amer. Math. Soc. 73 (1967), 360-363
MathSciNet review: 0210217
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. L. E. Baum, A statistical estimation procedure for probabilistic functions of Markov processes, IDA-CRD Working Paper No. 131.
  • 2. G. R. Blakley, Homogeneous nonnegative symmetric quadratic transformations, Bull. Amer. Math. Soc. 70 (1964), 712–715. MR 197476,
  • 3. G. R. Blakley and R. D. Dixon, The sequence of iterates of a non-negative nonlinear transformation. III, The theory of homogeneous symmetric transformations and related differential equations, (to appear).
  • 4. G. R. Blakley, Natural selection in ecosystems from the standpoint of mathematical genetics, (to appear).
  • 5. Wolfgang Hahn, Theory and application of Liapunov’s direct method, English edition prepared by Siegfried H. Lehnigk; translation by Hans H. Losenthien and Siegfried H. Lehnigk, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0147716
  • 6. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1959.
  • 7. Ted Petrie, Classification of equivalent processes which are probabilistic functions of finite Markov chains, IDA-CRD Working Paper No. 181, IDA-CRD Log No. 8694.

Additional Information