A subalgebra of ${\text {Ext}}_A^{**} \left ( {Z_2 ,Z_2 } \right )$
HTML articles powered by AMS MathViewer
- by A. Zachariou PDF
- Bull. Amer. Math. Soc. 73 (1967), 647-648
References
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20–104. MR 141119, DOI 10.2307/1970147
- J. Frank Adams, Stable homotopy theory, Springer-Verlag, Berlin-Göttingen-Heidelberg-New York, 1964. Lectures delivered at the University of California at Berkeley, 1961; Notes by A. T. Vasquez. MR 0185597, DOI 10.1007/978-3-662-15942-2
- J. F. Adams, A periodicity theorem in homological algebra, Proc. Cambridge Philos. Soc. 62 (1966), 365–377. MR 194486, DOI 10.1017/s0305004100039955 4. J. P. May, The cohomology of restricted Lie algebras, Dissertation, Princeton University, Princeton, N. J., 1964.
- J. Peter May, The cohomology of the Steenrod algebra; stable homotopy groups of spheres, Bull. Amer. Math. Soc. 71 (1965), 377–380. MR 185596, DOI 10.1090/S0002-9904-1965-11302-7
- John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR 99653, DOI 10.2307/1969932 7. M. Mahowald and M. Tangora, An infinite subalgebra of ExtA (Z2, Z2) (mimeographed). 8. M. Tangora, On the cohomology of the Steenrod algebra, Dissertation, North-Western University, Evanston, Ill., 1966.
Additional Information
- Journal: Bull. Amer. Math. Soc. 73 (1967), 647-648
- DOI: https://doi.org/10.1090/S0002-9904-1967-11808-1
- MathSciNet review: 0214060