Cellular decompositions of 3-manifolds that yield 3-manifolds
HTML articles powered by AMS MathViewer
- by Steve Armentrout PDF
- Bull. Amer. Math. Soc. 75 (1969), 453-456
References
- Steve Armentrout, Upper semi-continuous decompositions of $E^{3}$ with at most countably many non-degenerate elements, Ann. of Math. (2) 78 (1963), 605–618. MR 156331, DOI 10.2307/1970546
- Steve Armentrout, Decompostions of $E^{3}$ with a compact $\textrm {O}$-dimensional set of nondegenerate elements, Trans. Amer. Math. Soc. 123 (1966), 165–177. MR 195074, DOI 10.1090/S0002-9947-1966-0195074-4
- Steve Armentrout, Concerning cellular decompositions of $3$-manifolds that yield $3$-manifolds, Trans. Amer. Math. Soc. 133 (1968), 307–332. MR 230296, DOI 10.1090/S0002-9947-1968-0230296-7
- Steve Armentrout, Concerning cellular decompositions of $3$-manifolds with boundary, Trans. Amer. Math. Soc. 137 (1969), 231–236. MR 236931, DOI 10.1090/S0002-9947-1969-0236931-2 5. S. Armentrout, Shrinkability of certain decompositions of E, Illinois J. Math. (to appear).
- R. H. Bing, Point-like decompositions of $E^{3}$, Fund. Math. 50 (1961/62), 431–453. MR 137104, DOI 10.4064/fm-50-4-431-453
- E. H. Connell, Images of $E_{n}$ under acyclic maps, Amer. J. Math. 83 (1961), 787–790. MR 137122, DOI 10.2307/2372908
- Ross Finney, Point-like, simplicial mappings of a $3$-sphere, Canadian J. Math. 15 (1963), 591–604. MR 156329, DOI 10.4153/CJM-1963-060-x 9. T. M. Price, Upper semicontinuous decompositions of E, Thesis, University of Wisconsin, Madison, Wis., 1964.
- T. M. Price, A necessary condition that a cellular upper semi-continuous decomposition of $E^{n}$ yield $E^{n}$, Trans. Amer. Math. Soc. 122 (1966), 427–435. MR 193627, DOI 10.1090/S0002-9947-1966-0193627-0 11. T. M. Price, Decompositions of S, Notices Amer. Math. Soc. 15 (1968), 103. 12. W. Voxman, Decompositions of 3-manifolds and pseudo-isotopies, Notices Amer. Math. Soc. 15 (1968), 547. 13. W. Voxman, On the shrinkability of decompositions of 3-manifolds, Notices Amer. Math. Soc. 15 (1968), 649.
Additional Information
- Journal: Bull. Amer. Math. Soc. 75 (1969), 453-456
- DOI: https://doi.org/10.1090/S0002-9904-1969-12218-4
- MathSciNet review: 0239578