Gromoll groups, ${\text{Diff}}\,S^n$ and bilinear constructions of exotic spheres
Authors:
P. Antonelli, D. Burghelea and P. J. Kahn
Journal:
Bull. Amer. Math. Soc. 76 (1970), 772-777
MSC (1970):
Primary 5710, 5755; Secondary 5322
DOI:
https://doi.org/10.1090/S0002-9904-1970-12544-7
MathSciNet review:
0283809
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. J. F. Adams, On the groups 𝐽(𝑋). IV, Topology 5 (1966), 21–71. MR 198470, https://doi.org/10.1016/0040-9383(66)90004-8
- 2. J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, https://doi.org/10.2307/1970213
- 3. Douglas R. Anderson, On homotopy spheres bounding highly connected manifolds, Trans. Amer. Math. Soc. 139 (1969), 155–161. MR 238332, https://doi.org/10.1090/S0002-9947-1969-0238332-X
- 4. P. L. Antonelli, On the stable diffeomorphism of homotopy spheres in the stable range, 𝑛<2𝑝, Bull. Amer. Math. Soc. 75 (1969), 343–346. MR 240829, https://doi.org/10.1090/S0002-9904-1969-12164-6
- 5. M. G. Barratt and M. E. Mahowald, The metastable homotopy of 𝑂(𝑛), Bull. Amer. Math. Soc. 70 (1964), 758–760. MR 182004, https://doi.org/10.1090/S0002-9904-1964-11229-5
- 6. William Browder, Homotopy commutative 𝐻-spaces, Ann. of Math. (2) 75 (1962), 283–311. MR 150778, https://doi.org/10.2307/1970175
- 7. Jean Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961), 227–380 (French). MR 140120
- 8. R. De Sapio, Differential structures on a product of spheres. II, Ann. of Math. (2) 89 (1969), 305–313. MR 246307, https://doi.org/10.2307/1970670
- 9. Detlef Gromoll, Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären, Math. Ann. 164 (1966), 353–371 (German). MR 196754, https://doi.org/10.1007/BF01350046
- 10. J. R. Hubbuck, On homotopy commutative 𝐻-spaces, Topology 8 (1969), 119–126. MR 238316, https://doi.org/10.1016/0040-9383(69)90004-4
- 11. A. Kosinski, On the inertia group of π-manifolds, Amer. J. Math. 89 (1967), 227-248. MR 35 #4936.
- 12. Problems in differential and algebraic topology. Seattle Conference, 1963, Ann. of Math. (2) 81 (1965), 565–591. MR 182961, https://doi.org/10.2307/1970402
- 13. John Milnor, Differentiable structures on spheres, Amer. J. Math. 81 (1959), 962–972. MR 110107, https://doi.org/10.2307/2372998
- 14. M. Mimura, On the generalized Hopf homomorphism and the higher composition. II: πn+i(Sn) for i = 21 and 22, J. Math. Kyoto Univ. 4 (1965), 301-326. MR 31 #1676.
- 15. Mamoru Mimura and Hirosi Toda, The (𝑛+20)-th homotopy groups of 𝑛-spheres, J. Math. Kyoto Univ. 3 (1963), 37–58. MR 157384, https://doi.org/10.1215/kjm/1250524854
- 16. S. P. Novikov, Homotopy properties of the group of diffeomorphisms of the sphere., Dokl. Akad. Nauk SSSR 148 (1963), 32–35 (Russian). MR 0144356
- 17. S. P. Novikov, Differentiable sphere bundles, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 71–96 (Russian). MR 0174059
- 18. Stephen Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), 621–626. MR 112149, https://doi.org/10.1090/S0002-9939-1959-0112149-8
- 19. Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217
- 20. Hirosi Toda, 𝑝-primary components of homotopy groups. IV. Compositions and toric constructions, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 32 (1959), 297–332. MR 111041, https://doi.org/10.1215/kjm/1250776579
- 21. C. T. C. Wall, Finiteness conditions for 𝐶𝑊-complexes, Ann. of Math. (2) 81 (1965), 56–69. MR 171284, https://doi.org/10.2307/1970382
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 5710, 5755, 5322
Retrieve articles in all journals with MSC (1970): 5710, 5755, 5322
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1970-12544-7