Positive near-approximants and some problems of Halmos
Author:
Richard Bouldin
Journal:
Bull. Amer. Math. Soc. 80 (1974), 313-316
MSC (1970):
Primary 47A55; Secondary 46B99
DOI:
https://doi.org/10.1090/S0002-9904-1974-13479-8
MathSciNet review:
0331093
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Richard Bouldin, Positive approximants, Trans. Amer. Math. Soc. 177 (1973), 391–403. MR 317082, DOI https://doi.org/10.1090/S0002-9947-1973-0317082-6
- Richard Bouldin, Operators with a unique positive near-approximant, Indiana Univ. Math. J. 23 (1973/74), 421–427. MR 326451, DOI https://doi.org/10.1512/iumj.1973.23.23034 3. R. H. Bouldin, The convex structure of the set of positive approximants for a given operator (to appear).
- Ronald G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 49. MR 0361893
- P. R. Halmos, Positive approximants of operators, Indiana Univ. Math. J. 21 (1971/72), 951–960. MR 291829, DOI https://doi.org/10.1512/iumj.1972.21.21076
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 47A55, 46B99
Retrieve articles in all journals with MSC (1970): 47A55, 46B99