On simplicity of certain infinite dimensional Lie algebras
HTML articles powered by AMS MathViewer
References
- V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1323–1367 (Russian). MR 0259961 2. B. Ju. Weisfeiler and V. G. Kac, Exponentials in Lie algebras of characteristic p, Math. USSR-Izv. 5 (1971), 777-803.
- V. G. Kac, Infinite-dimensional Lie algebras, and the Dedekind $\eta$-function, Funkcional. Anal. i Priložen. 8 (1974), no. 1, 77–78 (Russian). MR 0374210
- V. G. Kac, Infinite-dimensional algebras, Dedekind’s $\eta$-function, classical Möbius function and the very strange formula, Adv. in Math. 30 (1978), no. 2, 85–136. MR 513845, DOI 10.1016/0001-8708(78)90033-6
- V. G. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. in Math. 34 (1979), no. 1, 97–108. MR 547842, DOI 10.1016/0001-8708(79)90066-5
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
Additional Information
- Journal: Bull. Amer. Math. Soc. 2 (1980), 311-314
- DOI: https://doi.org/10.1090/S0273-0979-1980-14746-1
- MathSciNet review: 555269