On defining relations of certain infinite-dimensional Lie algebras
HTML articles powered by AMS MathViewer
- by Ofer Gabber and Victor G. Kac PDF
- Bull. Amer. Math. Soc. 5 (1981), 185-189
References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1323–1367 (Russian). MR 0259961
- V. G. Kac, Infinite-dimensional Lie algebras, and the Dedekind $\eta$-function, Funkcional. Anal. i Priložen. 8 (1974), no. 1, 77–78 (Russian). MR 0374210
- V. G. Kac, On simplicity of certain infinite-dimensional Lie algebras, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 2, 311–314. MR 555269, DOI 10.1090/S0273-0979-1980-14746-1
- Jean-Pierre Serre, Algèbres de Lie semi-simples complexes, W. A. Benjamin, Inc., New York-Amsterdam, 1966 (French). MR 0215886
Additional Information
- Journal: Bull. Amer. Math. Soc. 5 (1981), 185-189
- MSC (1980): Primary 17B65
- DOI: https://doi.org/10.1090/S0273-0979-1981-14940-5
- MathSciNet review: 621889