Bi-invariant Schwartz multipliers and local solvability on nilpotent Lie groups
HTML articles powered by AMS MathViewer
- by Joe W. Jenkins PDF
- Bull. Amer. Math. Soc. 19 (1988), 291-294
References
- Lawrence Corwin, Tempered distributions on Heisenberg groups whose convolution with Schwartz class functions is Schwartz class, J. Functional Analysis 44 (1981), no. 3, 328–347. MR 643038, DOI 10.1016/0022-1236(81)90013-6
- Lawrence Corwin and Frederick P. Greenleaf, Solvability of certain left-invariant differential operators by nilmanifold theory, Comm. Pure Appl. Math. 36 (1983), no. 6, 755–765. MR 720592, DOI 10.1002/cpa.3160360603
- Jacques Dixmier and Paul Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2) 102 (1978), no. 4, 307–330 (French, with English summary). MR 517765
- Roger E. Howe, On a connection between nilpotent groups and oscillatory integrals associated to singularities, Pacific J. Math. 73 (1977), no. 2, 329–363. MR 578891, DOI 10.2140/pjm.1977.73.329
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
- Mustapha Raïs, Solutions élémentaires des opérateurs différentiels bi-inbariants sur un groupe de Lie nilpotent, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A495–A498 (French). MR 289720
- Laurent Schwartz, Théorie des distributions. Tome II, Publ. Inst. Math. Univ. Strasbourg, vol. 10, Hermann & Cie, Paris, 1951 (French). MR 0041345
Additional Information
- Journal: Bull. Amer. Math. Soc. 19 (1988), 291-294
- MSC (1985): Primary 22E30, 43A55
- DOI: https://doi.org/10.1090/S0273-0979-1988-15647-9
- MathSciNet review: 940490