Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 1567802
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Michael Sharpe
Title: General theory of Markov processes
Additional book information: Academic Press, San Diego, 1988, xi + 419 pp., $49.50. ISBN 0-12-639060-6.

References [Enhancements On Off] (What's this?)

  • Jacques Azéma, Théorie générale des processus et retournement du temps, Ann. Sci. École Norm. Sup. (4) 6 (1973), 459–519 (1974) (French). MR 365725
  • Jacques Azéma, Quelques applications de la théorie générale des processus. I, Invent. Math. 18 (1972), 293–336 (French). MR 326848, DOI 10.1007/BF01389817
  • R. M. Blumenthal, An extended Markov property, Trans. Amer. Math. Soc. 85 (1957), 52–72. MR 88102, DOI 10.1090/S0002-9947-1957-0088102-2
  • Kai Lai Chung, Lectures on boundary theory for Markov chains, Annals of Mathematics Studies, No. 65, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. With the cooperation of Paul-André Meyer. MR 0267644
  • J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431–458. MR 109961
  • J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86–121. MR 64347, DOI 10.1090/S0002-9947-1954-0064347-X
  • E. B. Dynkin, Markov processes and related problems of analysis, London Mathematical Society Lecture Note Series, vol. 54, Cambridge University Press, Cambridge-New York, 1982. MR 678918
  • E. B. Dynkin, Wanderings of a Markov process, Teor. Verojatnost. i Primenen. 16 (1971), 409–436 (Russian, with English summary). MR 0293721
  • Ronald K. Getoor, Markov processes: Ray processes and right processes, Lecture Notes in Mathematics, Vol. 440, Springer-Verlag, Berlin-New York, 1975. MR 0405598
  • Hunt (G. A. ) [1], Markov processes and potentials. I, II, III, Illinois J. Math. 1 (1957), 44-93; 1 (1957), 313-369; 2 (1958), 151-213.

  • Frank Knight, Note on regularization of Markov processes, Illinois J. Math. 9 (1965), 548–552. MR 177450
  • Kuznetsov (S. E. ) [1], Construction of Markov processes with random times of birth and death, Theory Probab. Appl. 18 (1974), 571-574.

  • Bernard Maisonneuve, Exit systems, Ann. Probability 3 (1975), no. 3, 399–411. MR 400417, DOI 10.1214/aop/1176996348
  • J. B. Walsh and P. A. Meyer, Quelques applications des résolvantes de Ray, Invent. Math. 14 (1971), 143–166 (French). MR 295436, DOI 10.1007/BF01405361
  • Joanna B. Mitro, Dual Markov processes: construction of a useful auxiliary process, Z. Wahrsch. Verw. Gebiete 47 (1979), no. 2, 139–156. MR 523166, DOI 10.1007/BF00535279
  • Daniel Ray, Resolvents, transition functions, and strongly Markovian processes, Ann. of Math. (2) 70 (1959), 43–72. MR 107302, DOI 10.2307/1969891
  • D. Revuz, Mesures associées aux fonctionnelles additives de Markov. I, Trans. Amer. Math. Soc. 148 (1970), 501–531 (French). MR 279890, DOI 10.1090/S0002-9947-1970-0279890-7
  • C. T. Shih, On extending potential theory to all strong Markov processes, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 1, 303–315 (English, with French summary). MR 288845

  • Review Information:

    Reviewer: Paul André Meyer
    Journal: Bull. Amer. Math. Soc. 21 (1989), 292-296
    DOI: https://doi.org/10.1090/S0273-0979-1989-15833-3