The Tait flyping conjecture
HTML articles powered by AMS MathViewer
- by William W. Menasco and Morwen B. Thistlethwaite PDF
- Bull. Amer. Math. Soc. 25 (1991), 403-412
References
- Joan S. Birman and William W. Menasco, Studying links via closed braids. III. Classifying links which are closed $3$-braids, Pacific J. Math. 161 (1993), no. 1, 25–113. MR 1237139, DOI 10.2140/pjm.1993.161.25 [B-S] F. Bonahon and L. Siebenmann, Algebraic knots, preprint.
- C. H. Dowker and Morwen B. Thistlethwaite, Classification of knot projections, Topology Appl. 16 (1983), no. 1, 19–31. MR 702617, DOI 10.1016/0166-8641(83)90004-4
- C. McA. Gordon, Some aspects of classical knot theory, Knot theory (Proc. Sem., Plans-sur-Bex, 1977) Lecture Notes in Math., vol. 685, Springer, Berlin, 1978, pp. 1–60. MR 521730
- W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), no. 1, 37–44. MR 721450, DOI 10.1016/0040-9383(84)90023-5
- Kunio Murasugi and Józef H. Przytycki, An index of a graph with applications to knot theory, Mem. Amer. Math. Soc. 106 (1993), no. 508, x+101. MR 1171835, DOI 10.1090/memo/0508
- William W. Menasco and Morwen B. Thistlethwaite, Surfaces with boundary in alternating knot exteriors, J. Reine Angew. Math. 426 (1992), 47–65. MR 1155746 [M-T2] W. W. Menasco and M. B. Thistlethwaite, The classification of alternating links, preprint. [S] A. Schrijver, Tait’s flyping conjecture for well-connected links, preprint.
- Morwen B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297–309. MR 899051, DOI 10.1016/0040-9383(87)90003-6
- Morwen B. Thistlethwaite, An upper bound for the breadth of the Jones polynomial, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 3, 451–456. MR 932668, DOI 10.1017/S030500410006504X
- Morwen B. Thistlethwaite, On the Kauffman polynomial of an adequate link, Invent. Math. 93 (1988), no. 2, 285–296. MR 948102, DOI 10.1007/BF01394334
- Morwen B. Thistlethwaite, On the algebraic part of an alternating link, Pacific J. Math. 151 (1991), no. 2, 317–333. MR 1132393, DOI 10.2140/pjm.1991.151.317
Additional Information
- Journal: Bull. Amer. Math. Soc. 25 (1991), 403-412
- MSC (1985): Primary 57M25
- DOI: https://doi.org/10.1090/S0273-0979-1991-16083-0
- MathSciNet review: 1098346