Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Izu Vaisman
Title: Lectures on the geometry of Poisson manifolds
Additional book information: Progress in Mathematics, vol. 118, Birkhäuser, Basel and Boston, 1994, vi + 205 pp., ISBN 3-7643-5016-4, $59.00$

References [Enhancements On Off] (What's this?)

  • Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 1–3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1975 edition. MR 979493
  • Jean-Luc Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), no. 1, 93–114. MR 950556
  • Jack F. Conn, Normal forms for smooth Poisson structures, Ann. of Math. (2) 121 (1985), no. 3, 565–593. MR 794374, DOI 10.2307/1971210
  • [D]
    P. M. Dirac, Lectures on quantum mechanics, Befer Graduate School Sci. Yeshiva Univ., New York, 1964.
  • T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
  • Robert Hermann, Cartan connections and the equivalence problem for geometric structures, Contributions to Differential Equations 3 (1964), 199–248. MR 165459
  • A. A. Kirillov, Local Lie algebras, Uspehi Mat. Nauk 31 (1976), no. 4(190), 57–76 (Russian). MR 0438390
  • [Kar]
    M. V. Karasev, Analogues of the objects of Lie group theory for nonlinear Poisson brackets, Math. USSR-Izv. 28 (1987), 497--527.
  • M. V. Karasëv and V. P. Maslov, Nonlinear Poisson brackets, Translations of Mathematical Monographs, vol. 119, American Mathematical Society, Providence, RI, 1993. Geometry and quantization; Translated from the Russian by A. Sossinsky [A. B. Sosinskiĭ] and M. Shishkova. MR 1214142, DOI 10.1007/bf01083679
  • [Lie]
    S. Lie, Theorie der transformationsgruppen (Zweiter Abschnitt, unter Mitwirkung von Prof. Dr. Friederich Engel), Teubner, Leipzig, 1890.
  • André Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), no. 2, 253–300 (French). MR 501133
  • [M]
    K. C. H. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, vol. 124, Cambridge University Press, 1987.
  • Kirill C. H. Mackenzie and Ping Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), no. 2, 415–452. MR 1262213, DOI 10.1215/S0012-7094-94-07318-3
  • Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523–557. MR 723816
  • Alan Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 1, 101–104. MR 866024, DOI 10.1090/S0273-0979-1987-15473-5
  • Alan Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), no. 4, 705–727. MR 959095, DOI 10.2969/jmsj/04040705
  • T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058

  • Review Information:

    Reviewer: Ping Xu
    Affiliation: The Pennsylvania State University
    Journal: Bull. Amer. Math. Soc. 33 (1996), 255-261
    Review copyright: © Copyright 1996 American Mathematical Society