Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



Symplectic reduction and Riemann-Roch formulas for multiplicities

Author: Reyer Sjamaar
Journal: Bull. Amer. Math. Soc. 33 (1996), 327-338
MSC (1991): Primary 58F06; Secondary 14L30, 19L10
MathSciNet review: 1364017
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • Scott Axelrod, Steve Della Pietra, and Edward Witten, Geometric quantization of Chern-Simons gauge theory, J. Differential Geom. 33 (1991), no. 3, 787–902. MR 1100212
  • A. Canas da Silva, Y. Karshon, and S. Tolman, Quantization of presymplectic manifolds and circle actions, preprint, Massachusetts Institute of Technology, in preparation.
  • J. J. Duistermaat, V. Guillemin, E. Meinrenken, and S. Wu, Symplectic reduction and Riemann-Roch for circle actions, Math. Res. Letters 2 (1995), 259–266. 785
  • C. Duval, J. Elhadad, and G. M. Tuynman, The BRS method and geometric quantization: some examples, Comm. Math. Phys. 126 (1990), no. 3, 535–557. MR 1032872
  • Mark J. Gotay, Constraints, reduction, and quantization, J. Math. Phys. 27 (1986), no. 8, 2051–2066. MR 850590, DOI
  • M. Grossberg and Y. Karshon, Equivariant index and the moment map for completely integrable torus actions, Adv. in Math., to appear.
  • V. Guillemin, Reduced phase spaces and Riemann-Roch, Lie Groups and Geometry in Honor of B. Kostant (Massachusetts Institute of Technology, 1994) (R. Brylinski et al., eds.), Progress in Mathematics, vol. 123, Birkhäuser, Boston, 1995, pp. 305–334. 539
  • V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), no. 3, 515–538. MR 664118, DOI
  • V. Guillemin and S. Sternberg, Homogeneous quantization and multiplicities of group representations, J. Functional Analysis 47 (1982), no. 3, 344–380. MR 665022, DOI
  • L. C. Jeffrey and F. C. Kirwan, Localization and the quantization conjecture, preprint, 1995.
  • ---, Localization for nonabelian group actions, Topology 34 (1995), 291–327. 878
  • ---, On localization and Riemann-Roch numbers for symplectic quotients, preprint, 1995.
  • Jaap Kalkman, Cohomology rings of symplectic quotients, J. Reine Angew. Math. 458 (1995), 37–52. MR 1310952, DOI
  • Lapo Casetti and Marco Pettini, Analytic computation of the strong stochasticity threshold in Hamiltonian dynamics using Riemannian geometry, Phys. Rev. E (3) 48 (1993), no. 6, 4320–4332. MR 1376982, DOI
  • Bertram Kostant and Shlomo Sternberg, Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Physics 176 (1987), no. 1, 49–113. MR 893479, DOI
  • E. Lerman, Symplectic cuts, Math. Res. Letters 2 (1995), 247–258. 784
  • Jerrold Marsden and Alan Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), no. 1, 121–130. MR 402819, DOI
  • E. Meinrenken, On Riemann-Roch formulas for multiplicities, J. Amer. Math. Soc., to appear.
  • ---, Symplectic surgery and the Spin$^{\mathrm {c}}$-Dirac operator, Adv. in Math., to appear.
  • ---, Vielfachheitsformeln für die Quantisierung von Phasenräumen, Ph.D. thesis, Universität Freiburg, 1994.
  • Kenneth R. Meyer, Symmetries and integrals in mechanics, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 259–272. MR 0331427
  • Reyer Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. of Math. (2) 141 (1995), no. 1, 87–129. MR 1314032, DOI
  • M. Vergne, Multiplicity formula for geometric quantization I, II, Duke Math. J., to appear.
  • ---, A note on Jeffrey-Kirwan-Witten’s localisation formula, Topology, to appear.
  • ---, Equivariant index formula for orbifolds, preprint, École Normale Supérieure, Paris, 1994.
  • ---, Quantification géométrique et multiplicités, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 327–332. 306
  • Edward Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), no. 4, 303–368. MR 1185834, DOI
  • N. M. J. Woodhouse, Geometric quantization, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992. Oxford Science Publications. MR 1183739
  • Siye Wu, An integration formula for the square of moment maps of circle actions, Lett. Math. Phys. 29 (1993), no. 4, 311–328. MR 1257832, DOI

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 58F06, 14L30, 19L10

Retrieve articles in all journals with MSC (1991): 58F06, 14L30, 19L10

Additional Information

Reyer Sjamaar
Affiliation: Cornell University, Ithaca, New York 14853-7901

Keywords: Momentum mappings, geometric quantization, equivariant index theorem
Received by editor(s): September 15, 1995
Received by editor(s) in revised form: December 24, 1995
Additional Notes: I gratefully acknowledge support from the Ruhr-Universität Bochum. I wish to thank L. Jeffrey, Y. Karshon, and E. Meinrenken for helpful comments.
Article copyright: © Copyright 1996 American Mathematical Society