Recent developments on the Ricci flow
Authors:
Huai-Dong Cao and Bennett Chow
Journal:
Bull. Amer. Math. Soc. 36 (1999), 59-74
MSC (1991):
Primary 58G11; Secondary 53C21, 35K55
DOI:
https://doi.org/10.1090/S0273-0979-99-00773-9
MathSciNet review:
1655479
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This article reports recent developments of the research on Hamilton's Ricci flow and its applications.
- [AM] Uwe Abresch and Wolfgang T. Meyer, Injectivity radius estimates and sphere theorems, Comparison geometry (Berkeley, CA, 1993–94) Math. Sci. Res. Inst. Publ., vol. 30, Cambridge Univ. Press, Cambridge, 1997, pp. 1–47. MR 1452866, https://doi.org/10.2977/prims/1195166274
- [A1] Michael T. Anderson, Extrema of curvature functionals on the space of metrics on 3-manifolds, Calc. Var. Partial Differential Equations 5 (1997), no. 3, 199–269. MR 1438146, https://doi.org/10.1007/s005260050066
- [A2] Michael T. Anderson, Scalar curvature and geometrization conjectures for 3-manifolds, Comparison geometry (Berkeley, CA, 1993–94) Math. Sci. Res. Inst. Publ., vol. 30, Cambridge Univ. Press, Cambridge, 1997, pp. 49–82. MR 1452867
- [Ba] Shigetoshi Bando, On the classification of three-dimensional compact Kaehler manifolds of nonnegative bisectional curvature, J. Differential Geom. 19 (1984), no. 2, 283–297. MR 755227
- [BSY] J. Bartz, M. Struwe, and R. Ye, A new approach to the Ricci flow on 𝑆², Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 3, 475–482. MR 1310637
- [Ca1] Huai Dong Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359–372. MR 799272, https://doi.org/10.1007/BF01389058
- [Ca2] Huai Dong Cao, On Harnack’s inequalities for the Kähler-Ricci flow, Invent. Math. 109 (1992), no. 2, 247–263. MR 1172691, https://doi.org/10.1007/BF01232027
- [Ca3] H.-D. Cao, Limits of solutions to the Kähler-Ricci flow, J. Differential Geom. 45 (1997) 257-272. CMP 97:13
- [Ca4] Huai-Dong Cao, Existence of gradient Kähler-Ricci solitons, Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994) A K Peters, Wellesley, MA, 1996, pp. 1–16. MR 1417944
- [CH] H.-D. Cao and R. S. Hamilton, Gradient Kähler-Ricci solitons and periodic orbits, Comm. Anal. Geom. (to appear).
- [C] Haiwen Chen, Pointwise \frac14-pinched 4-manifolds, Ann. Global Anal. Geom. 9 (1991), no. 2, 161–176. MR 1136125, https://doi.org/10.1007/BF00776854
- [Ch] Bennett Chow, The Ricci flow on the 2-sphere, J. Differential Geom. 33 (1991), no. 2, 325–334. MR 1094458
- [CC] Bennett Chow and Sun-Chin Chu, A geometric interpretation of Hamilton’s Harnack inequality for the Ricci flow, Math. Res. Lett. 2 (1995), no. 6, 701–718. MR 1362964, https://doi.org/10.4310/MRL.1995.v2.n6.a4
- [CG]
Jeff
Cheeger and Mikhael
Gromov, Collapsing Riemannian manifolds while keeping their
curvature bounded. I, J. Differential Geom. 23
(1986), no. 3, 309–346. MR
852159
Jeff Cheeger and Mikhael Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded. II, J. Differential Geom. 32 (1990), no. 1, 269–298. MR 1064875 - [De] Dennis M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), no. 1, 157–162. MR 697987
- [ES] James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, https://doi.org/10.2307/2373037
- [Ha1] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- [Ha2] Richard S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), no. 2, 153–179. MR 862046
- [Ha3] Richard S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237–262. MR 954419, https://doi.org/10.1090/conm/071/954419
- [Ha4] Richard S. Hamilton, An isoperimetric estimate for the Ricci flow on the two-sphere, Modern methods in complex analysis (Princeton, NJ, 1992) Ann. of Math. Stud., vol. 137, Princeton Univ. Press, Princeton, NJ, 1995, pp. 191–200. MR 1369139, https://doi.org/10.1080/09502389500490321
- [Ha5] R. S. Hamilton, Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal. Geom. (1998) to appear.
- [Ha6] R. S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997) 1-92. CMP 97:14
- [Ha7] Richard S. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom. 37 (1993), no. 1, 225–243. MR 1198607
- [Ha8] Richard S. Hamilton, Eternal solutions to the Ricci flow, J. Differential Geom. 38 (1993), no. 1, 1–11. MR 1231700
- [Ha9] Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7–136. MR 1375255
- [Hu] Gerhard Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 21 (1985), no. 1, 47–62. MR 806701
- [IJ] James Isenberg and Martin Jackson, Ricci flow of locally homogeneous geometries on closed manifolds, J. Differential Geom. 35 (1992), no. 3, 723–741. MR 1163457
- [Iv] Thomas Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993), no. 4, 301–307. MR 1249376, https://doi.org/10.1016/0926-2245(93)90008-O
- [LY] Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, https://doi.org/10.1007/BF02399203
- [Ma] Christophe Margerin, Un théorème optimal pour le pincement faible en dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 17, 877–880 (French, with English summary). MR 870911
- [MM] Mario J. Micallef and John Douglas Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199–227. MR 924677, https://doi.org/10.2307/1971420
- [Mo] Ngaiming Mok, The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom. 27 (1988), no. 2, 179–214. MR 925119
- [Ni] Seiki Nishikawa, Deformation of Riemannian metrics and manifolds with bounded curvature ratios, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 343–352. MR 840284, https://doi.org/10.1090/pspum/044/840284
- [Sc] Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. MR 788292
- [SY] R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127–142. MR 541332, https://doi.org/10.2307/1971247
- [S] Peter Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487. MR 705527, https://doi.org/10.1112/blms/15.5.401
- [Sh1]
Wan-Xiong
Shi, Deforming the metric on complete Riemannian manifolds, J.
Differential Geom. 30 (1989), no. 1, 223–301.
MR
1001277
Wan-Xiong Shi, Ricci deformation of the metric on complete noncompact Riemannian manifolds, J. Differential Geom. 30 (1989), no. 2, 303–394. MR 1010165 - [Sh2] Wan-Xiong Shi, Complete noncompact Kähler manifolds with positive holomorphic bisectional curvature, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 437–440. MR 1044171, https://doi.org/10.1090/S0273-0979-1990-15954-3
- [Sh3] Wan-Xiong Shi, Ricci flow and the uniformization on complete noncompact Kähler manifolds, J. Differential Geom. 45 (1997), no. 1, 94–220. MR 1443333
- [T] William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, https://doi.org/10.1090/S0273-0979-1982-15003-0
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1991): 58G11, 53C21, 35K55
Retrieve articles in all journals with MSC (1991): 58G11, 53C21, 35K55
Additional Information
Huai-Dong Cao
Affiliation:
Department of Mathematics, Texas A&M University, College Station, TX 77843
Email:
cao@math.tamu.edu
Bennett Chow
Affiliation:
Department of Mathematics, University of Minnesota, Minneapolis, MN 55455
Email:
bchow@math.umn.edu
DOI:
https://doi.org/10.1090/S0273-0979-99-00773-9
Received by editor(s):
June 17, 1997
Received by editor(s) in revised form:
October 15, 1998
Additional Notes:
Authors partially supported by the NSF
Article copyright:
© Copyright 1999
American Mathematical Society