Heilbronn characters
Authors:
Richard Foote, Hy Ginsberg and V. Kumar Murty
Journal:
Bull. Amer. Math. Soc. 52 (2015), 465-496
MSC (2010):
Primary 20C15, 11R42
DOI:
https://doi.org/10.1090/bull/1492
Published electronically:
April 6, 2015
MathSciNet review:
3348444
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In a seminal paper in 1972 Hans Heilbronn introduced a virtual character associated to representations of Galois extensions of number fields and Artin’s Conjecture on the holomorphy of $L$-series. His construction has evolved in both application and scope, and may now be applied to produce what are called Heilbronn characters of arbitrary finite groups. This article surveys the inception and development of this concept, weaving together its number-theoretic and group-theoretic dimensions, and culminates in a description of the recent classification of unfaithful minimal Heilbronn characters. Connections with other areas of mathematics, variations on these themes, and possible future directions are also explored.
- Emil Artin, Beweis des allgemeinen Reziprozitätsgesetzes, Abh. Math. Sem. Univ. Hamburg 5 (1927), no. 1, 353–363 (German). MR 3069486, DOI https://doi.org/10.1007/BF02952531
- Michael Aschbacher, Radha Kessar, and Bob Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, vol. 391, Cambridge University Press, Cambridge, 2011. MR 2848834
- A. Baker, Linear forms in the logarithms of algebraic numbers. IV, Mathematika 15 (1968), 204–216. MR 258756, DOI https://doi.org/10.1112/S0025579300002588
- A. Baker, Imaginary quadratic fields with class number $2$, Ann. of Math. (2) 94 (1971), 139–152. MR 299583, DOI https://doi.org/10.2307/1970739
- A. S. Bang, Taltheoretiske Undersølgelser, Tidskrift f. Math. 5 (1886), 70–80 and 130–137.
- C. Broto, N. Castellana, J. Grodal, R. Levi, and B. Oliver, Extensions of $p$-local finite groups, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3791–3858. MR 2302515, DOI https://doi.org/10.1090/S0002-9947-07-04225-0
- Carles Broto, Ran Levi, and Bob Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779–856. MR 1992826, DOI https://doi.org/10.1090/S0894-0347-03-00434-X
- Carles Broto, Ran Levi, and Bob Oliver, Discrete models for the $p$-local homotopy theory of compact Lie groups and $p$-compact groups, Geom. Topol. 11 (2007), 315–427. MR 2302494, DOI https://doi.org/10.2140/gt.2007.11.315
- L. Clozel, Base change for ${\rm GL}(n)$, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 791–797. MR 934282, DOI https://doi.org/10.1215/s0012-7094-87-05525-6
- J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), no. 3, 308–339. MR 554399, DOI https://doi.org/10.1112/blms/11.3.308
- Everett C. Dade, Accessible characters are monomial, J. Algebra 117 (1988), no. 1, 256–266. MR 955603, DOI https://doi.org/10.1016/0021-8693%2888%2990253-0
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI https://doi.org/10.2307/1971021
- M. Deuring, Die zetafunktion einer algebraischen Kurve vom Geschlechte Eins. I, II, IIII, IV. Nachr. Akad. Wiss., Göttingen, (1953), 85–94; (1955), 13–42; (1956), 37–76; (1957), 55–80.
- Walter Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0219636
- Pamela Ferguson and I. M. Isaacs, Induced characters which are multiples of irreducibles, J. Algebra 124 (1989), no. 1, 149–157. MR 1005700, DOI https://doi.org/10.1016/0021-8693%2889%2990156-7
- Ramón J. Flores and Jérôme Scherer, Cellularization of classifying spaces and fusion properties of finite groups, J. Lond. Math. Soc. (2) 76 (2007), no. 1, 41–56. MR 2351607, DOI https://doi.org/10.1112/jlms/jdm031
- Ramón J. Flores and Richard M. Foote, Strongly closed subgroups of finite groups, Adv. Math. 222 (2009), no. 2, 453–484. MR 2538017, DOI https://doi.org/10.1016/j.aim.2009.05.005
- Ramón J. Flores and Richard M. Foote, The cellular structure of the classifying spaces of finite groups, Israel J. Math. 184 (2011), 129–156. MR 2823972, DOI https://doi.org/10.1007/s11856-011-0062-0
- R. Foote, Non-monomial characters and Artin’s Conjecture, Trans. Amer. Math. Soc., 321 (1990), 261–272.
- Richard Foote, Sylow $2$-subgroups of Galois groups arising as minimal counterexamples to Artin’s conjecture, Comm. Algebra 25 (1997), no. 2, 607–616. MR 1428801, DOI https://doi.org/10.1080/00927879708825877
- Richard Foote, A characterization of finite groups containing a strongly closed $2$-subgroup, Comm. Algebra 25 (1997), no. 2, 593–606. MR 1428800, DOI https://doi.org/10.1080/00927879708825876
- Richard Foote and V. Kumar Murty, Zeros and poles of Artin $L$-series, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 1, 5–11. MR 966135, DOI https://doi.org/10.1017/S0305004100001316
- Richard Foote and David Wales, Zeros of order $2$ of Dedekind zeta functions and Artin’s conjecture, J. Algebra 131 (1990), no. 1, 226–257. MR 1055006, DOI https://doi.org/10.1016/0021-8693%2890%2990173-L
- H. Ginsberg, Minimal Heilbronn Characters of Finite Groups, Doctoral Dissertation, University of Vermont, 2010.
- Hy Ginsberg, Unfaithful minimal Heilbronn characters of finite groups, J. Algebra 331 (2011), 466–481. MR 2774670, DOI https://doi.org/10.1016/j.jalgebra.2010.09.043
- Hy Ginsberg, Unfaithful minimal Heilbronn characters of $L_2(q)$, Proc. Edinb. Math. Soc. (2) 56 (2013), no. 1, 57–69. MR 3021405, DOI https://doi.org/10.1017/S0013091512000168
- Hy Ginsberg, Groups with strongly $p$-embedded subgroups and cyclic Sylow $p$-subgroups, J. Group Theory 17 (2014), no. 1, 175–190. MR 3176657, DOI https://doi.org/10.1515/jgt-2013-0039
- George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403–420. MR 202822, DOI https://doi.org/10.1016/0021-8693%2866%2990030-5
- Dorian M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 4, 624–663. MR 450233
- David M. Goldschmidt, $2$-fusion in finite groups, Ann. of Math. (2) 99 (1974), 70–117. MR 335627, DOI https://doi.org/10.2307/1971014
- David M. Goldschmidt, Strongly closed $2$-subgroups of finite groups, Ann. of Math. (2) 102 (1975), no. 3, 475–489. MR 393223, DOI https://doi.org/10.2307/1971040
- Larry Joel Goldstein, Relative imaginary quadratic fields of class number $1$ or $2$, Trans. Amer. Math. Soc. 165 (1972), 353–364. MR 291124, DOI https://doi.org/10.1090/S0002-9947-1972-0291124-8
- Daniel Gorenstein and Richard Lyons, The local structure of finite groups of characteristic $2$ type, Mem. Amer. Math. Soc. 42 (1983), no. 276, vii+731. MR 690900, DOI https://doi.org/10.1090/memo/0276
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI https://doi.org/10.1007/BF01388809
- E. Hecke, Über die $L$-funktionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper. Gesells. der Wissens. zu Göttingen, Nachrichten (1917), 299–318.
- H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. 5 (1934), 150-160.
- H. Heilbronn, Zeta-functions and $L$-functions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 204–230. MR 0218327
- H. Heilbronn, On real simple zeros of Dedekind $\zeta $-functions, Proceedings of the Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972) Univ. Colorado, Boulder, Colo., 1972, pp. 108–110. MR 0389785
- H. Heilbronn, On real zeros of Dedekind $\zeta $-functions, Canadian J. Math. 25 (1973), 870–873. MR 327719, DOI https://doi.org/10.4153/CJM-1973-090-3
- I. Martin Isaacs, Character theory of finite groups, Dover Publications, Inc., New York, 1994. Corrected reprint of the 1976 original [Academic Press, New York; MR0460423 (57 #417)]. MR 1280461
- Chandrashekhar Khare and Jean-Pierre Wintenberger, Serre’s modularity conjecture. I, Invent. Math. 178 (2009), no. 3, 485–504. MR 2551763, DOI https://doi.org/10.1007/s00222-009-0205-7
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341
- Joachim König, Solvability of generalized monomial groups, J. Group Theory 13 (2010), no. 2, 207–220. MR 2607576, DOI https://doi.org/10.1515/JGT.2009.047
- Joshua M. Lansky and Kevin M. Wilson, A variation on the solvable case of the Dedekind conjecture, J. Ramanujan Math. Soc. 20 (2005), no. 2, 81–90. MR 2169089
- Markus Linckelmann, Simple fusion systems and the Solomon 2-local groups, J. Algebra 296 (2006), no. 2, 385–401. MR 2201048, DOI https://doi.org/10.1016/j.jalgebra.2005.09.024
- Maruti Ram Murty, On Artin $L$-functions, Class field theory—its centenary and prospect (Tokyo, 1998) Adv. Stud. Pure Math., vol. 30, Math. Soc. Japan, Tokyo, 2001, pp. 13–29. MR 1846449, DOI https://doi.org/10.2969/aspm/03010013
- M. Ram Murty and A. Raghuram, Some variations on the Dedekind conjecture, J. Ramanujan Math. Soc. 15 (2000), no. 4, 225–245. MR 1801220
- M. Ram Murty and V. Kumar Murty, Base change and the Birch-Swinnerton-Dyer conjecture, A tribute to Emil Grosswald: number theory and related analysis, Contemp. Math., vol. 143, Amer. Math. Soc., Providence, RI, 1993, pp. 481–494. MR 1210535, DOI https://doi.org/10.1090/conm/143/01014
- V. Kumar Murty, Stark zeros in certain towers of fields, Math. Res. Lett. 6 (1999), no. 5-6, 511–519. MR 1739210, DOI https://doi.org/10.4310/MRL.1999.v6.n5.a4
- V. Kumar Murty, Class numbers of CM-fields with solvable normal closure, Compositio Math. 127 (2001), no. 3, 273–287. MR 1845038, DOI https://doi.org/10.1023/A%3A1017589432526
- Sandra L. Rhoades, A generalization of the Aramata-Brauer theorem, Proc. Amer. Math. Soc. 119 (1993), no. 2, 357–364. MR 1166360, DOI https://doi.org/10.1090/S0002-9939-1993-1166360-8
- S. Rhoades, A Character-Theoretic Approach to Artin’s Conjecture, Doctoral Dissertation, University of Vermont, 1993.
- Moshe Roitman, On Zsigmondy primes, Proc. Amer. Math. Soc. 125 (1997), no. 7, 1913–1919. MR 1402885, DOI https://doi.org/10.1090/S0002-9939-97-03981-6
- H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1–27. MR 222050
- H. M. Stark, A transcendence theorem for class-number problems. II, Ann. of Math. (2) 96 (1972), 174–209. MR 309878, DOI https://doi.org/10.2307/1970897
- H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135–152. MR 342472, DOI https://doi.org/10.1007/BF01405166
- Josef Stoer and Christoph Witzgall, Convexity and optimization in finite dimensions. I, Die Grundlehren der mathematischen Wissenschaften, Band 163, Springer-Verlag, New York-Berlin, 1970. MR 0286498
- Judith Evelyn Steere Sunley, ON THE CLASS NUMBERS OF TOTALLY IMAGINARY QUADRATIC EXTENSIONS OF TOTALLYREAL FIELDS, ProQuest LLC, Ann Arbor, MI, 1971. Thesis (Ph.D.)–University of Maryland, College Park. MR 2621002
- Jerrold Tunnell, Artin’s conjecture for representations of octahedral type, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173–175. MR 621884, DOI https://doi.org/10.1090/S0273-0979-1981-14936-3
- Robert W. van der Waall, On the structure of the minimal non-$M$-groups, Nederl. Akad. Wetensch. Indag. Math. 40 (1978), no. 3, 398–405. MR 507832
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 20C15, 11R42
Retrieve articles in all journals with MSC (2010): 20C15, 11R42
Additional Information
Richard Foote
Affiliation:
Department of Mathematics and Statistics, University of Vermont, 16 Colchester Avenue, Burlington, Vermont 05405
MR Author ID:
255242
Email:
foote@math.uvm.edu
Hy Ginsberg
Affiliation:
Department of Mathematics, Worcester State University, 486 Chandler Street, Worcester Massachusetts 01602
MR Author ID:
928514
Email:
hginsberg@worcester.edu
V. Kumar Murty
Affiliation:
Department of Mathematics, University of Toronto, 40 St. George Street, Room 6290, Toronto, Ontario M5S 2E4, Canada
MR Author ID:
128560
Email:
murty@math.utoronto.ca
Received by editor(s):
June 18, 2014
Received by editor(s) in revised form:
March 17, 2015
Published electronically:
April 6, 2015
Dedicated:
Dedicated to Professor Hans A. Heilbronn
Article copyright:
© Copyright 2015
American Mathematical Society