The role of the Ahlfors five islands theorem in complex dynamics
HTML articles powered by AMS MathViewer
- by Walter Bergweiler
- Conform. Geom. Dyn. 4 (2000), 22-34
- DOI: https://doi.org/10.1090/S1088-4173-00-00057-6
- Published electronically: March 14, 2000
- PDF | Request permission
Abstract:
The Ahlfors five islands theorem has become an important tool in complex dynamics. We discuss its role there, describing how it can be used to deal with a variety of problems. This includes questions concerning the Hausdorff dimension of Julia sets, the existence of singleton components of Julia sets, and the existence of repelling periodic points. We point out that for many applications a simplified version of the Ahlfors five islands theorem suffices, and we give an elementary proof of this version.References
- L. V. Ahlfors, Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), 157–194, and Collected Papers, Birkhäuser, Boston, Basel, Stuttgart, 1982, Vol. I, pp. 214–251.
- I. N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252–256. MR 226009, DOI 10.1007/BF01110294
- I. N. Baker, Completely invariant domains of entire functions, Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, pp. 33–35. MR 0271344
- I. N. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 277–283. MR 0402044
- I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. (3) 49 (1984), no. 3, 563–576. MR 759304, DOI 10.1112/plms/s3-49.3.563
- I. N. Baker, Wandering domains for maps of the punctured plane, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), no. 2, 191–198. MR 951969, DOI 10.5186/aasfm.1987.1204
- I. N. Baker and P. Domínguez, Some connectedness properties of Julia sets, preprint, 1998.
- I. N. Baker, J. Kotus, and Lü Yinian, Iterates of meromorphic functions. I, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 241–248. MR 1116639, DOI 10.1017/S014338570000612X
- I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. III. Preperiodic domains, Ergodic Theory Dynam. Systems 11 (1991), no. 4, 603–618. MR 1145612, DOI 10.1017/S0143385700006386
- D. Bargmann, Simple proofs of some fundamental properties of the Julia set, Ergodic Theory Dynamical Systems 19 (1999), 553–558.
- D. Bargmann and W. Bergweiler, Periodic points and normal families, to appear in Proc. Amer. Math. Soc.
- Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
- Eric Bedford, Mikhail Lyubich, and John Smillie, Polynomial diffeomorphisms of $\textbf {C}^2$. IV. The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), no. 1, 77–125. MR 1207478, DOI 10.1007/BF01232426
- Walter Bergweiler, Periodic points of entire functions: proof of a conjecture of Baker, Complex Variables Theory Appl. 17 (1991), no. 1-2, 57–72. MR 1123803, DOI 10.1080/17476939108814495
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Walter Bergweiler, A new proof of the Ahlfors five islands theorem, J. Anal. Math. 76 (1998), 337–347. MR 1676971, DOI 10.1007/BF02786941
- F. Berteloot and J. Duval, Une démonstration directe de la densité des cycles répulsifs dans l’ensemble de Julia, preprint, 1998.
- Andreas Bolsch, Repulsive periodic points of meromorphic functions, Complex Variables Theory Appl. 31 (1996), no. 1, 75–79. MR 1423240, DOI 10.1080/17476939608814947
- —, Iteration of meromorphic functions with countably many singularities, Dissertation, Berlin, 1997.
- —, Periodic Fatou components of meromorphic functions, Bull. London Math. Soc. 31 (1999), 543–555 .
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- J. P. R. Christensen and P. Fischer, Ergodic invariant probability measures and entire functions, Acta Math. Hungar. 73 (1996), no. 3, 213–218. MR 1415932, DOI 10.1007/BF02181052
- Chi Tai Chuang, Normal families of meromorphic functions, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. MR 1249270, DOI 10.1142/1904
- John B. Conway, Functions of one complex variable, 2nd ed., Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1978. MR 503901
- P. Domínguez, Connectedness properties of Julia sets of transcendental entire functions, Complex Variables Theory Appl. 32 (1997), no. 3, 199–215. MR 1457686, DOI 10.1080/17476939708814991
- P. Domínguez, Dynamics of transcendental meromorphic functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 225–250. MR 1601879
- K. Falconer, Fractal geometry, John Wiley & Sons, Chichester, 1997.
- V. Garber, On the iteration of rational functions, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 3, 497–505. MR 492197, DOI 10.1017/S0305004100055304
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- W. K. Hayman, Research problems in function theory, The Athlone Press [University of London], London, 1967. MR 0217268
- M. E. Herring, An extension of the Julia-Fatou theory of iteration, Ph.D. thesis, London, 1995.
- Xin-Hou Hua and Chung-Chun Yang, Dynamics of transcendental functions, Asian Mathematics Series, vol. 1, Gordon and Breach Science Publishers, Amsterdam, 1998. MR 1652248
- G. Julia, Sur l’itération des fonctions rationelles, J. Math. Pures Appl. (7) 4 (1918), 47–245, and Œuvres de Gaston Julia, Gauthier-Villars, Paris, 1968, Vol. I.
- Linda Keen, Dynamics of holomorphic self-maps of $\textbf {C}^*$, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 9–30. MR 955806, DOI 10.1007/978-1-4613-9602-4_{2}
- Olli Lehto, The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity, Comment. Math. Helv. 33 (1959), 196–205. MR 107003, DOI 10.1007/BF02565916
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- A. J. Lohwater and Ch. Pommerenke, On normal meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A. I. 550 (1973), 12. MR 338381
- J. Milnor, Dynamics in one complex variable, Vieweg, Braunschweig, Wiesbaden, 1999.
- David Minda, A heuristic principle for a nonessential isolated singularity, Proc. Amer. Math. Soc. 93 (1985), no. 3, 443–447. MR 773999, DOI 10.1090/S0002-9939-1985-0773999-3
- Rolf Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Chelsea Publishing Co., New York, 1974 (French). Reprinting of the 1929 original. MR 0417418
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- R. M. Robinson, A generalization of Picard’s and related theorems, Duke Math. J. 5 (1939), 118–132.
- Joel L. Schiff, Normal families, Universitext, Springer-Verlag, New York, 1993. MR 1211641, DOI 10.1007/978-1-4612-0907-2
- Wilhelm Schwick, Repelling periodic points in the Julia set, Bull. London Math. Soc. 29 (1997), no. 3, 314–316. MR 1435565, DOI 10.1112/S0024609396007035
- Gwyneth M. Stallard, Entire functions with Julia sets of zero measure, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 3, 551–557. MR 1068456, DOI 10.1017/S0305004100069437
- Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions, J. London Math. Soc. (2) 49 (1994), no. 2, 281–295. MR 1260113, DOI 10.1112/S0024610799008029
- Norbert Steinmetz, Rational iteration, De Gruyter Studies in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1993. Complex analytic dynamical systems. MR 1224235, DOI 10.1515/9783110889314
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- Lawrence Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), no. 8, 813–817. MR 379852, DOI 10.2307/2319796
- Lawrence Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 3, 215–230. MR 1624862, DOI 10.1090/S0273-0979-98-00755-1
Bibliographic Information
- Walter Bergweiler
- Affiliation: Mathematisches Seminar, Christian–Albrechts–Universität zu Kiel, Ludewig–Meyn–Str. 4, D–24098 Kiel, Germany
- MR Author ID: 35350
- Email: bergweiler@math.uni-kiel.de
- Received by editor(s): October 29, 1999
- Published electronically: March 14, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Conform. Geom. Dyn. 4 (2000), 22-34
- MSC (2000): Primary 30C25; Secondary 30D05, 30D45, 37F10
- DOI: https://doi.org/10.1090/S1088-4173-00-00057-6
- MathSciNet review: 1741773